Tuning the (Chir)Optical Properties and Squeezing out the Inherent Chirality in Polyphenylene‐Locked Helical Carbon Nanorings

Distorting linear polyaromatic hydrocarbons (PAHs) out of planarity affects their physical properties and breaks their symmetry to induce inherent chirality. However, the chirality cannot be achieved in large distorted PAHs‐based macrocycles due to a low racemization barrier for isomerization. Herei...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 28; no. 13; pp. e202103828 - n/a
Main Authors Wang, Jinyi, Shi, Hong, Wang, Shengda, Zhang, Xinyu, Fang, Pengwei, Zhou, Yu, Zhuang, Gui‐Lin, Shao, Xiang, Du, Pingwu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Distorting linear polyaromatic hydrocarbons (PAHs) out of planarity affects their physical properties and breaks their symmetry to induce inherent chirality. However, the chirality cannot be achieved in large distorted PAHs‐based macrocycles due to a low racemization barrier for isomerization. Herein, we report the precise synthesis and tuning size‐dependent (chir)optical properties of a new class of chiral PAHs‐containing conjugated macrocycles (cyclo[n]paraphenylene‐2,6‐anthrylene, [n]CPPAn2,6; n=6–8). Their inherent chiralities were squeezed out in small anthrylene‐based macrocycles. Efficient resolutions for chiral enantiomers with (P)/(M)‐helicity of small [6‐7]CPPAns were achieved by HPLC. Interestingly, these macrocycles showed enriched size‐dependent physical, chiral, and (chir)optical properties. Theoretical calculations indicate that these macrocycles have high strain energy (Estrain=60.8 to 73.4 kcal/mol) and very small Egap (∼3.0 eV). Notably, these enantiomers showed strong chiroptical properties and dissymmetry factors (|gabs| and |glum|∼0.01 for an enantiomer of [6]CPPAn2,6), which can give them potential applications in optically active materials. This study reports the precise synthesis and tuning size‐dependent (chir)optical properties of chiral distorted acenes ([n]CPPAn2,6; n=6–8). Efficient resolutions for chiral enantiomers with (P)/(M)‐helicity were achieved only when the size is small. These enantiomers showed strong chiroptical properties and dissymmetry factors (|gabs| and |glum|∼0.01 for an enantiomer of [6]CPPAn2,6).
Bibliography:These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.202103828