Tetraphenylethylene‐Interweaving Conjugated Macrocycle Polymer Materials as Two‐Photon Fluorescence Sensors for Metal Ions and Organic Molecules
A luminescent conjugated macrocycle polymer (CMP) with strong two‐photon fluorescence property, namely, P[5]‐TPE‐CMP, is constructed from ditriflate‐functionalized pillar[5]arene and a 1,1,2,2‐tetrakis(4‐ethynylphenyl)ethylene (TPE) linker through a Sonogashira–Hagihara cross‐coupling reaction. Sign...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 20; pp. e1800177 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A luminescent conjugated macrocycle polymer (CMP) with strong two‐photon fluorescence property, namely, P[5]‐TPE‐CMP, is constructed from ditriflate‐functionalized pillar[5]arene and a 1,1,2,2‐tetrakis(4‐ethynylphenyl)ethylene (TPE) linker through a Sonogashira–Hagihara cross‐coupling reaction. Significantly, in sharp contrast with the corresponding conjugated microporous polymer without synthetic macrocycles, P[5]‐TPE‐CMP shows an outstanding stability against photobleaching and exhibits highly selective cation sensing capability toward Fe3+ at different excitation wavelengths (both UV and red–near‐infrared regions). Meanwhile, its fluorescence could also be sufficiently quenched by 4‐amino azobenzene, a frequently used organic dye that is certified to be carcinogenic, as compared with a group of common organic compounds. This work paves a new way for enhancing the properties of porous organic polymers through the introduction of supramolecular macrocycles like macrocyclic arenes.
Conjugated macrocycle polymers are first constructed from ditriflate‐functionalized pillararene and a 1,1,2,2‐tetrakis(4‐ethynylphenyl)ethylene linker through a Sonogashira–Hagihara cross‐coupling reaction. They show excellent two‐photon fluorescence (TPF) and serve as a highly efficient TPF sensor for metal ions and organic molecules. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0935-9648 1521-4095 1521-4095 |
DOI: | 10.1002/adma.201800177 |