Strategies Towards Capturing Nitrogenase Substrates and Intermediates via Controlled Alteration of Electron Fluxes

Nitrogenase utilizes an ATP‐dependent reductase to deliver electrons to its catalytic component to enable two important reactions: the reduction of N2 to NH4+, and the reduction of CO to hydrocarbons. The two nitrogenase‐based reactions parallel the industrial Haber–Bosch and Fischer–Tropsch process...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 25; no. 10; pp. 2389 - 2395
Main Authors Hiller, Caleb J., Lee, Chi Chung, Stiebritz, Martin T., Rettberg, Lee A., Hu, Yilin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 18.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nitrogenase utilizes an ATP‐dependent reductase to deliver electrons to its catalytic component to enable two important reactions: the reduction of N2 to NH4+, and the reduction of CO to hydrocarbons. The two nitrogenase‐based reactions parallel the industrial Haber–Bosch and Fischer–Tropsch processes, yet they occur under ambient conditions. As such, understanding the enzymatic mechanism of nitrogenase is crucial for the future development of biomimetic strategies for energy‐efficient production of valuable chemical commodities. Mechanistic investigations of nitrogenase has long been hampered by the difficulty to trap substrates and intermediates relevant to the nitrogenase reactions. Recently, we have successfully captured CO on the Azotobacter vinelandii V‐nitrogenase via two approaches that alter the electron fluxes in a controlled manner: one approach utilizes an artificial electron donor to trap CO on the catalytic component of V‐nitrogenase in the resting state; whereas the other employs a mismatched reductase component to reduce the electron flux through the system and consequently accumulate CO on the catalytic component of V‐nitrogenase. Here we summarize the major outcome of these recent studies, which not only clarified the catalytic relevance of the one‐CO (lo‐CO) and multi‐CO (hi‐CO) bound states of nitrogenase, but also pointed to a potential competition between N2 and CO for binding to the same pair of reactive Fe sites across the sulfur belt of the cofactor. Together, these results highlight the utility of these strategies in poising the cofactor at a well‐defined state for substrate‐ or intermediate‐trapping via controlled alteration of electron fluxes, which could prove beneficial for further elucidation of the mechanistic details of nitrogenase‐catalyzed reactions. Two strategies have been used to capture CO on V‐nitrogenase as a substrate via controlled alteration of electron fluxes: one employs an artificial electron donor to uncouple CO binding from its subsequent reduction; whereas the other utilizes a mismatched reductase component to reduce the electron flux and “backs up” CO on the enzyme. Both strategies enable generation of a substrate‐bound state at a well‐defined state of the cofactor.
AbstractList Nitrogenase utilizes an ATP-dependent reductase to deliver electrons to its catalytic component to enable two important reactions: the reduction of N2 to NH4 + , and the reduction of CO to hydrocarbons. The two nitrogenase-based reactions parallel the industrial Haber-Bosch and Fischer-Tropsch processes, yet they occur under ambient conditions. As such, understanding the enzymatic mechanism of nitrogenase is crucial for the future development of biomimetic strategies for energy-efficient production of valuable chemical commodities. Mechanistic investigations of nitrogenase has long been hampered by the difficulty to trap substrates and intermediates relevant to the nitrogenase reactions. Recently, we have successfully captured CO on the Azotobacter vinelandii V-nitrogenase via two approaches that alter the electron fluxes in a controlled manner: one approach utilizes an artificial electron donor to trap CO on the catalytic component of V-nitrogenase in the resting state; whereas the other employs a mismatched reductase component to reduce the electron flux through the system and consequently accumulate CO on the catalytic component of V-nitrogenase. Here we summarize the major outcome of these recent studies, which not only clarified the catalytic relevance of the one-CO (lo-CO) and multi-CO (hi-CO) bound states of nitrogenase, but also pointed to a potential competition between N2 and CO for binding to the same pair of reactive Fe sites across the sulfur belt of the cofactor. Together, these results highlight the utility of these strategies in poising the cofactor at a well-defined state for substrate- or intermediate-trapping via controlled alteration of electron fluxes, which could prove beneficial for further elucidation of the mechanistic details of nitrogenase-catalyzed reactions.
Abstract Nitrogenase utilizes an ATP‐dependent reductase to deliver electrons to its catalytic component to enable two important reactions: the reduction of N 2 to NH 4 + , and the reduction of CO to hydrocarbons. The two nitrogenase‐based reactions parallel the industrial Haber–Bosch and Fischer–Tropsch processes, yet they occur under ambient conditions. As such, understanding the enzymatic mechanism of nitrogenase is crucial for the future development of biomimetic strategies for energy‐efficient production of valuable chemical commodities. Mechanistic investigations of nitrogenase has long been hampered by the difficulty to trap substrates and intermediates relevant to the nitrogenase reactions. Recently, we have successfully captured CO on the Azotobacter vinelandii V‐nitrogenase via two approaches that alter the electron fluxes in a controlled manner: one approach utilizes an artificial electron donor to trap CO on the catalytic component of V‐nitrogenase in the resting state; whereas the other employs a mismatched reductase component to reduce the electron flux through the system and consequently accumulate CO on the catalytic component of V‐nitrogenase. Here we summarize the major outcome of these recent studies, which not only clarified the catalytic relevance of the one‐CO (lo‐CO) and multi‐CO (hi‐CO) bound states of nitrogenase, but also pointed to a potential competition between N 2 and CO for binding to the same pair of reactive Fe sites across the sulfur belt of the cofactor. Together, these results highlight the utility of these strategies in poising the cofactor at a well‐defined state for substrate‐ or intermediate‐trapping via controlled alteration of electron fluxes, which could prove beneficial for further elucidation of the mechanistic details of nitrogenase‐catalyzed reactions.
Nitrogenase utilizes an ATP‐dependent reductase to deliver electrons to its catalytic component to enable two important reactions: the reduction of N2 to NH4+, and the reduction of CO to hydrocarbons. The two nitrogenase‐based reactions parallel the industrial Haber–Bosch and Fischer–Tropsch processes, yet they occur under ambient conditions. As such, understanding the enzymatic mechanism of nitrogenase is crucial for the future development of biomimetic strategies for energy‐efficient production of valuable chemical commodities. Mechanistic investigations of nitrogenase has long been hampered by the difficulty to trap substrates and intermediates relevant to the nitrogenase reactions. Recently, we have successfully captured CO on the Azotobacter vinelandii V‐nitrogenase via two approaches that alter the electron fluxes in a controlled manner: one approach utilizes an artificial electron donor to trap CO on the catalytic component of V‐nitrogenase in the resting state; whereas the other employs a mismatched reductase component to reduce the electron flux through the system and consequently accumulate CO on the catalytic component of V‐nitrogenase. Here we summarize the major outcome of these recent studies, which not only clarified the catalytic relevance of the one‐CO (lo‐CO) and multi‐CO (hi‐CO) bound states of nitrogenase, but also pointed to a potential competition between N2 and CO for binding to the same pair of reactive Fe sites across the sulfur belt of the cofactor. Together, these results highlight the utility of these strategies in poising the cofactor at a well‐defined state for substrate‐ or intermediate‐trapping via controlled alteration of electron fluxes, which could prove beneficial for further elucidation of the mechanistic details of nitrogenase‐catalyzed reactions. Two strategies have been used to capture CO on V‐nitrogenase as a substrate via controlled alteration of electron fluxes: one employs an artificial electron donor to uncouple CO binding from its subsequent reduction; whereas the other utilizes a mismatched reductase component to reduce the electron flux and “backs up” CO on the enzyme. Both strategies enable generation of a substrate‐bound state at a well‐defined state of the cofactor.
Nitrogenase utilizes an ATP-dependent reductase to deliver electrons to its catalytic component to enable two important reactions: the reduction of N to NH , and the reduction of CO to hydrocarbons. The two nitrogenase-based reactions parallel the industrial Haber-Bosch and Fischer-Tropsch processes, yet they occur under ambient conditions. As such, understanding the enzymatic mechanism of nitrogenase is crucial for the future development of biomimetic strategies for energy-efficient production of valuable chemical commodities. Mechanistic investigations of nitrogenase has long been hampered by the difficulty to trap substrates and intermediates relevant to the nitrogenase reactions. Recently, we have successfully captured CO on the Azotobacter vinelandii V-nitrogenase via two approaches that alter the electron fluxes in a controlled manner: one approach utilizes an artificial electron donor to trap CO on the catalytic component of V-nitrogenase in the resting state; whereas the other employs a mismatched reductase component to reduce the electron flux through the system and consequently accumulate CO on the catalytic component of V-nitrogenase. Here we summarize the major outcome of these recent studies, which not only clarified the catalytic relevance of the one-CO (lo-CO) and multi-CO (hi-CO) bound states of nitrogenase, but also pointed to a potential competition between N and CO for binding to the same pair of reactive Fe sites across the sulfur belt of the cofactor. Together, these results highlight the utility of these strategies in poising the cofactor at a well-defined state for substrate- or intermediate-trapping via controlled alteration of electron fluxes, which could prove beneficial for further elucidation of the mechanistic details of nitrogenase-catalyzed reactions.
Author Stiebritz, Martin T.
Hiller, Caleb J.
Rettberg, Lee A.
Hu, Yilin
Lee, Chi Chung
Author_xml – sequence: 1
  givenname: Caleb J.
  surname: Hiller
  fullname: Hiller, Caleb J.
  organization: University of California
– sequence: 2
  givenname: Chi Chung
  surname: Lee
  fullname: Lee, Chi Chung
  organization: University of California
– sequence: 3
  givenname: Martin T.
  surname: Stiebritz
  fullname: Stiebritz, Martin T.
  organization: University of California
– sequence: 4
  givenname: Lee A.
  surname: Rettberg
  fullname: Rettberg, Lee A.
  organization: University of California
– sequence: 5
  givenname: Yilin
  orcidid: 0000-0002-9088-2865
  surname: Hu
  fullname: Hu, Yilin
  email: yilinh@uci.edu
  organization: University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30225894$$D View this record in MEDLINE/PubMed
BookMark eNqF0UFPHCEUB3BibHS1Xj02JL30MlvgwTAczWStJrY9aM8TlnmzxczCFmZq_fZF19qkl5544f34h7x3Qg5DDEjIOWdLzpj46L7jdikYbxhoUAdkwZXgFehaHZIFM1JXtQJzTE5yvmeMmRrgiBwDE0I1Ri5Iup2SnXDjMdO7-GBTn2lrd9OcfNjQL35KcYPBZqS38zo_20xt6Ol1mDBtsffPNz-9pW0MRY8j9vRiLE07-RhoHOhqRFc6gV6O8y_Mb8mbwY4Zz17OU_LtcnXXXlU3Xz9dtxc3lZNgVDUAMguuhsEJANGALIXhTHPZ940WKNdyDU43Toi-FLape204ZwqsrPkAp-TDPneX4o8Z89RtfXY4jjZgnHMnODMgjFJ1oe__ofdxTqH8rqhGSKNZrYta7pVLMeeEQ7dLfmvTY8dZ97SN7mkb3es2yoN3L7Hzuozqlf8ZfwFmDx78iI__ievaq9Xnv-G_Ady4mPM
CitedBy_id crossref_primary_10_1021_acs_chemrev_1c00914
crossref_primary_10_1021_acs_chemrev_9b00650
crossref_primary_10_1021_acs_chemrev_9b00704
crossref_primary_10_1039_D3DT02903D
crossref_primary_10_1002_anie_202010790
crossref_primary_10_1002_anie_202015751
crossref_primary_10_1021_acs_chemrev_2c00612
crossref_primary_10_1002_ange_202015751
crossref_primary_10_1002_ange_202010790
Cites_doi 10.1002/anie.201600010
10.1126/science.aar2765
10.1016/j.cep.2015.02.004
10.1021/ja971088s
10.1002/anie.201800189
10.1016/S0162-0134(02)00480-4
10.1021/ja054078x
10.1002/9783527656837.ch15
10.1021/cr950055x
10.1021/cr9500545
10.1039/c1dt10240k
10.1021/cr950057h
10.1002/anie.200301553
10.7554/eLife.11620
10.1021/ja9715096
10.1126/science.1256679
10.1038/nchembio.2428
10.1073/pnas.1519696112
10.1126/science.1206883
10.1002/chem.201704378
10.1021/ja1019657
10.1126/science.1191455
10.1002/ange.201800189
10.1073/pnas.0506967102
10.1021/cr00045a002
10.1039/b308188e
10.1002/ange.200301553
10.1073/pnas.0904408106
10.1038/360553a0
10.1021/bi972667c
10.1021/cr400641x
10.1002/ange.201600010
10.1039/C1DT11535A
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201803735
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 2395
ExternalDocumentID 10_1002_chem_201803735
30225894
CHEM201803735
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: CHE-1651398; CHE-1608926
– fundername: Hellman Foundation
– fundername: National Science Foundation
  grantid: CHE-1651398
– fundername: National Science Foundation
  grantid: CHE-1608926
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4395-f3e0a3c63fc2332834fc2910714dd872e4b4b3c78c22db3ca86d7911053a461f3
IEDL.DBID DR2
ISSN 0947-6539
IngestDate Sat Aug 17 03:50:20 EDT 2024
Thu Oct 10 19:18:19 EDT 2024
Fri Aug 23 02:24:43 EDT 2024
Sat Sep 28 08:36:30 EDT 2024
Sat Aug 24 01:01:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords reductase
catalysis
CO
artificial electron donor
nitrogenase
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4395-f3e0a3c63fc2332834fc2910714dd872e4b4b3c78c22db3ca86d7911053a461f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9088-2865
PMID 30225894
PQID 2182497067
PQPubID 986340
PageCount 7
ParticipantIDs proquest_miscellaneous_2109329556
proquest_journals_2182497067
crossref_primary_10_1002_chem_201803735
pubmed_primary_30225894
wiley_primary_10_1002_chem_201803735_CHEM201803735
PublicationCentury 2000
PublicationDate February 18, 2019
PublicationDateYYYYMMDD 2019-02-18
PublicationDate_xml – month: 02
  year: 2019
  text: February 18, 2019
  day: 18
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 333
2010; 329
2015; 4
1997; 119
1992; 360
2011; 40
2017; 23
1996; 96
2003 2003; 42 115
2003
2003; 93
2014; 114
1998; 37
2016 2016; 55 128
1981; 81
2018; 359
2005; 102
2018 2018; 57 130
2015; 112
2017; 13
2005; 127
2010; 132
2015; 90
2013
2014; 345
2012; 41
2009; 106
e_1_2_6_10_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_8_2
e_1_2_6_9_1
e_1_2_6_7_2
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_23_2
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 23
  start-page: 16152
  year: 2017
  publication-title: Chemistry
– volume: 102
  start-page: 13825
  year: 2005
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 96
  start-page: 2965
  year: 1996
  publication-title: Chem. Rev.
– volume: 81
  start-page: 447
  year: 1981
  publication-title: Chem. Rev.
– volume: 13
  start-page: 956
  year: 2017
  publication-title: Nat. Chem. Biol.
– volume: 37
  start-page: 9449
  year: 1998
  publication-title: Biochemistry
– volume: 359
  start-page: 1484
  year: 2018
  publication-title: Science
– volume: 132
  start-page: 12612
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 93
  start-page: 11
  year: 2003
  publication-title: J. Inorg. Biochem.
– start-page: 311
  year: 2013
– volume: 42 115
  start-page: 2004 2050
  year: 2003 2003
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 90
  start-page: 24
  year: 2015
  publication-title: Chem. Eng. Process.
– volume: 106
  start-page: 9209
  year: 2009
  end-page: 9214
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 41
  start-page: 1118
  year: 2012
  publication-title: Dalton Trans.
– volume: 119
  start-page: 10121
  year: 1997
  publication-title: J. Am. Chem. Soc.
– volume: 40
  start-page: 5516
  year: 2011
  publication-title: Dalton Trans.
– volume: 4
  start-page: 11620
  year: 2015
  publication-title: Elife
– start-page: 2590
  year: 2003
  publication-title: Chem. Commun.
– volume: 96
  start-page: 3013
  year: 1996
  publication-title: Chem. Rev.
– volume: 119
  start-page: 6450
  year: 1997
  publication-title: J. Am. Chem. Soc.
– volume: 333
  start-page: 753
  year: 2011
  publication-title: Science
– volume: 96
  start-page: 2983
  year: 1996
  publication-title: Chem. Rev.
– volume: 55 128
  start-page: 8216 8356
  year: 2016 2016
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 360
  start-page: 553
  year: 1992
  publication-title: Nature
– volume: 345
  start-page: 1620
  year: 2014
  publication-title: Science
– volume: 57 130
  start-page: 3411 3469
  year: 2018 2018
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 114
  start-page: 4041
  year: 2014
  publication-title: Chem. Rev.
– volume: 329
  start-page: 642
  year: 2010
  publication-title: Science
– volume: 112
  start-page: 13845
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 127
  start-page: 15880
  year: 2005
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_6_7_1
  doi: 10.1002/anie.201600010
– ident: e_1_2_6_15_1
  doi: 10.1126/science.aar2765
– ident: e_1_2_6_9_1
  doi: 10.1016/j.cep.2015.02.004
– ident: e_1_2_6_27_1
  doi: 10.1021/ja971088s
– ident: e_1_2_6_23_1
  doi: 10.1002/anie.201800189
– ident: e_1_2_6_29_1
  doi: 10.1016/S0162-0134(02)00480-4
– ident: e_1_2_6_26_1
  doi: 10.1021/ja054078x
– ident: e_1_2_6_11_1
  doi: 10.1002/9783527656837.ch15
– ident: e_1_2_6_1_1
  doi: 10.1021/cr950055x
– ident: e_1_2_6_2_1
  doi: 10.1021/cr9500545
– ident: e_1_2_6_30_1
  doi: 10.1039/c1dt10240k
– ident: e_1_2_6_3_1
  doi: 10.1021/cr950057h
– ident: e_1_2_6_8_1
  doi: 10.1002/anie.200301553
– ident: e_1_2_6_21_1
  doi: 10.7554/eLife.11620
– ident: e_1_2_6_25_1
  doi: 10.1021/ja9715096
– ident: e_1_2_6_20_1
  doi: 10.1126/science.1256679
– ident: e_1_2_6_14_1
  doi: 10.1038/nchembio.2428
– ident: e_1_2_6_22_1
  doi: 10.1073/pnas.1519696112
– ident: e_1_2_6_6_1
  doi: 10.1126/science.1206883
– ident: e_1_2_6_16_1
  doi: 10.1002/chem.201704378
– ident: e_1_2_6_18_1
  doi: 10.1021/ja1019657
– ident: e_1_2_6_5_1
  doi: 10.1126/science.1191455
– ident: e_1_2_6_23_2
  doi: 10.1002/ange.201800189
– ident: e_1_2_6_17_1
  doi: 10.1073/pnas.0506967102
– ident: e_1_2_6_10_1
  doi: 10.1021/cr00045a002
– ident: e_1_2_6_24_1
  doi: 10.1039/b308188e
– ident: e_1_2_6_8_2
  doi: 10.1002/ange.200301553
– ident: e_1_2_6_12_1
  doi: 10.1073/pnas.0904408106
– ident: e_1_2_6_19_1
  doi: 10.1038/360553a0
– ident: e_1_2_6_28_1
  doi: 10.1021/bi972667c
– ident: e_1_2_6_4_1
  doi: 10.1021/cr400641x
– ident: e_1_2_6_7_2
  doi: 10.1002/ange.201600010
– ident: e_1_2_6_13_1
  doi: 10.1039/C1DT11535A
SSID ssj0009633
Score 2.3734694
Snippet Nitrogenase utilizes an ATP‐dependent reductase to deliver electrons to its catalytic component to enable two important reactions: the reduction of N2 to NH4+,...
Nitrogenase utilizes an ATP-dependent reductase to deliver electrons to its catalytic component to enable two important reactions: the reduction of N to NH ,...
Abstract Nitrogenase utilizes an ATP‐dependent reductase to deliver electrons to its catalytic component to enable two important reactions: the reduction of N...
Nitrogenase utilizes an ATP-dependent reductase to deliver electrons to its catalytic component to enable two important reactions: the reduction of N2 to NH4 +...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 2389
SubjectTerms artificial electron donor
Azotobacter
Biomimetics
Catalysis
Chemical reactions
Chemistry
Commodities
Electron density
Fischer-Tropsch process
Intermediates
Nitrogenase
Organic chemistry
Reductase
Reduction
Substrates
Sulfur
Title Strategies Towards Capturing Nitrogenase Substrates and Intermediates via Controlled Alteration of Electron Fluxes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201803735
https://www.ncbi.nlm.nih.gov/pubmed/30225894
https://www.proquest.com/docview/2182497067
https://search.proquest.com/docview/2109329556
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VcGgvhT4oaSlypUo9BRLbiZPjsrBClcqhAolb5IxtCbHKok0WIX49Y2cTuu2hUntzEkfxYzzzxZ75BuCrtmlOqFXG6LSJZUY_KGT0MHaIOXKXOGP9hv6Pi_z8Sn6_zq5_ieLv-SHGDTe_MoK-9gtc1-3xM2ko9clHkqdFIpTwUeapUN6n6_TnM38USVefS16q2HOwDqyNCT_efH3TKv0BNTeRazA9sx3QQ6N7j5Pbo1VXH-Hjb3yO_9OrXXi9xqVs0gvSG3hhm7fwcjqkg3sHy4HH1rbsMvjatmyq77oQ5sgubrrlgmSRbCLzuijUbZluDAt7jiFAxd-5v9Fs2rvHz61hk3lgdSbhYAvHztY5edhsvnqw7Xu4mp1dTs_jdcKGGAnXZLETNtECc-GQC0HARVKB8IhKpTGF4lbWshaoCuTcUEEXuVGkbUkRaJmnTuzBVrNo7D6wMkHDEUv057gokxqTrC6ywqBUqFwawbdhwqq7npej6hmYeeXHsBrHMIKDYT6r9fpsK89bL0tFpjqCL-NjGlF_XKIbu1j5OgmB2zLL8gg-9HIwfkoQ9MmKUkbAw2z-pQ2V57cYrz7-y0uf4BWVS-8wnhYHsNUtV_Yz4aGuPoTtycnpyewwyP4T-9YEtw
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZRLedNAC0ZC4pQ28SNOjtXS1QLtHtBW4hY5Y0eqWGWrTRYhfj1jZ5Nq4YBEb45jK37MeL7Y428A3huXZoRaZYy1sbFU9INCRg_jGjFDXie1dX5D_3Keza7k529q8Cb0d2F6fohxw81rRlivvYL7DenTW9ZQ6pS_Sp7midBC3YcHpPPCR2_4-PWWQYrkq48mL3XsWVgH3saEn-7W37VLf4HNXewajM_0EVRDs3ufk-8nm646wV9_MDreqV-P4WALTdlZL0tP4J5rnsL-ZIgI9wzWA5Wta9kiuNu2bGJuunDTkc2vu_WKxJHMIvPLUSjbMtNYFrYdwx0Vn_Pj2rBJ7yG_dJadLQOxM8kHW9XsfBuWh02Xm5-ufQ5X0_PFZBZvYzbESNBGxbVwiRGYiRq5EIRdJCUIkuhUWptr7mQlK4E6R84tJUyeWU0LLq0FRmZpLV7AXrNq3CGwIkHLEQv0R7kokwoTVeUqtyg16jqN4MMwY-VNT81R9iTMvPRjWI5jGMHRMKHlVkXb0lPXy0KTtY7g3fiaRtSfmJjGrTa-TEL4tlAqi-BlLwjjpwShH5UXMgIepvMfbSg9xcX49Op_Kr2F_dni8qK8-DT_8hoeUn7h_cfT_Aj2uvXGHRM86qo3QQF-AwM6B10
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL70KggJGQOKVNYjtOjtW2q_JaIdRKvUXO2JYqVtnVJosQv56xs0m75VAJbo5jK36MPV_smW8A3mub5oRaRYxOm1hI-kEhpYexQ8wxc4kz1h_of53lJ2fi07k8v-LF3_NDjAdufmWE_dov8KVxB5ekodQn70meFglXXN6GOyIn-Oth0fdLAikSrz6YvFCxJ2EdaBuT7GC7_rZa-gtrbkPXoHumD0EPre5NTn7sr7t6H39fI3T8n249ggcbYMoOe0l6DLds8wTuTYZ4cE9hNRDZ2padBmPblk30sgt-jmx20a0WJIykFJnfjELZlunGsHDoGDxUfM7PC80mvX383Bp2OA-0ziQdbOHY8SYoD5vO179s-wzOpsenk5N4E7EhRgI2MnbcJppjzh1mnBNyEZQgQKJSYUyhMitqUXNUBWaZoYQucqNou6WdQIs8dXwXdppFY18AKxM0GWKJ_iIXRVJjIutCFgaFQuXSCD4ME1Yte2KOqqdgzio_htU4hhHsDfNZbRZoW3nielEq0tURvBtf04j6-xLd2MXal0kI3ZZS5hE87-Vg_BQn7COLUkSQhdm8oQ2VJ7gYn17-S6W3cPfb0bT68nH2-RXcp-zSG4-nxR7sdKu1fU3YqKvfBPH_A-VZBgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategies+Towards+Capturing+Nitrogenase+Substrates+and+Intermediates+via+Controlled+Alteration+of+Electron+Fluxes&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Hiller%2C+Caleb+J&rft.au=Chi+Chung+Lee&rft.au=Stiebritz%2C+Martin+T&rft.au=Rettberg%2C+Lee+A&rft.date=2019-02-18&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=25&rft.issue=10&rft.spage=2389&rft.epage=2395&rft_id=info:doi/10.1002%2Fchem.201803735&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon