Strategies Towards Capturing Nitrogenase Substrates and Intermediates via Controlled Alteration of Electron Fluxes
Nitrogenase utilizes an ATP‐dependent reductase to deliver electrons to its catalytic component to enable two important reactions: the reduction of N2 to NH4+, and the reduction of CO to hydrocarbons. The two nitrogenase‐based reactions parallel the industrial Haber–Bosch and Fischer–Tropsch process...
Saved in:
Published in | Chemistry : a European journal Vol. 25; no. 10; pp. 2389 - 2395 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
18.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nitrogenase utilizes an ATP‐dependent reductase to deliver electrons to its catalytic component to enable two important reactions: the reduction of N2 to NH4+, and the reduction of CO to hydrocarbons. The two nitrogenase‐based reactions parallel the industrial Haber–Bosch and Fischer–Tropsch processes, yet they occur under ambient conditions. As such, understanding the enzymatic mechanism of nitrogenase is crucial for the future development of biomimetic strategies for energy‐efficient production of valuable chemical commodities. Mechanistic investigations of nitrogenase has long been hampered by the difficulty to trap substrates and intermediates relevant to the nitrogenase reactions. Recently, we have successfully captured CO on the Azotobacter vinelandii V‐nitrogenase via two approaches that alter the electron fluxes in a controlled manner: one approach utilizes an artificial electron donor to trap CO on the catalytic component of V‐nitrogenase in the resting state; whereas the other employs a mismatched reductase component to reduce the electron flux through the system and consequently accumulate CO on the catalytic component of V‐nitrogenase. Here we summarize the major outcome of these recent studies, which not only clarified the catalytic relevance of the one‐CO (lo‐CO) and multi‐CO (hi‐CO) bound states of nitrogenase, but also pointed to a potential competition between N2 and CO for binding to the same pair of reactive Fe sites across the sulfur belt of the cofactor. Together, these results highlight the utility of these strategies in poising the cofactor at a well‐defined state for substrate‐ or intermediate‐trapping via controlled alteration of electron fluxes, which could prove beneficial for further elucidation of the mechanistic details of nitrogenase‐catalyzed reactions.
Two strategies have been used to capture CO on V‐nitrogenase as a substrate via controlled alteration of electron fluxes: one employs an artificial electron donor to uncouple CO binding from its subsequent reduction; whereas the other utilizes a mismatched reductase component to reduce the electron flux and “backs up” CO on the enzyme. Both strategies enable generation of a substrate‐bound state at a well‐defined state of the cofactor. |
---|---|
AbstractList | Nitrogenase utilizes an ATP-dependent reductase to deliver electrons to its catalytic component to enable two important reactions: the reduction of N2 to NH4 + , and the reduction of CO to hydrocarbons. The two nitrogenase-based reactions parallel the industrial Haber-Bosch and Fischer-Tropsch processes, yet they occur under ambient conditions. As such, understanding the enzymatic mechanism of nitrogenase is crucial for the future development of biomimetic strategies for energy-efficient production of valuable chemical commodities. Mechanistic investigations of nitrogenase has long been hampered by the difficulty to trap substrates and intermediates relevant to the nitrogenase reactions. Recently, we have successfully captured CO on the Azotobacter vinelandii V-nitrogenase via two approaches that alter the electron fluxes in a controlled manner: one approach utilizes an artificial electron donor to trap CO on the catalytic component of V-nitrogenase in the resting state; whereas the other employs a mismatched reductase component to reduce the electron flux through the system and consequently accumulate CO on the catalytic component of V-nitrogenase. Here we summarize the major outcome of these recent studies, which not only clarified the catalytic relevance of the one-CO (lo-CO) and multi-CO (hi-CO) bound states of nitrogenase, but also pointed to a potential competition between N2 and CO for binding to the same pair of reactive Fe sites across the sulfur belt of the cofactor. Together, these results highlight the utility of these strategies in poising the cofactor at a well-defined state for substrate- or intermediate-trapping via controlled alteration of electron fluxes, which could prove beneficial for further elucidation of the mechanistic details of nitrogenase-catalyzed reactions. Abstract Nitrogenase utilizes an ATP‐dependent reductase to deliver electrons to its catalytic component to enable two important reactions: the reduction of N 2 to NH 4 + , and the reduction of CO to hydrocarbons. The two nitrogenase‐based reactions parallel the industrial Haber–Bosch and Fischer–Tropsch processes, yet they occur under ambient conditions. As such, understanding the enzymatic mechanism of nitrogenase is crucial for the future development of biomimetic strategies for energy‐efficient production of valuable chemical commodities. Mechanistic investigations of nitrogenase has long been hampered by the difficulty to trap substrates and intermediates relevant to the nitrogenase reactions. Recently, we have successfully captured CO on the Azotobacter vinelandii V‐nitrogenase via two approaches that alter the electron fluxes in a controlled manner: one approach utilizes an artificial electron donor to trap CO on the catalytic component of V‐nitrogenase in the resting state; whereas the other employs a mismatched reductase component to reduce the electron flux through the system and consequently accumulate CO on the catalytic component of V‐nitrogenase. Here we summarize the major outcome of these recent studies, which not only clarified the catalytic relevance of the one‐CO (lo‐CO) and multi‐CO (hi‐CO) bound states of nitrogenase, but also pointed to a potential competition between N 2 and CO for binding to the same pair of reactive Fe sites across the sulfur belt of the cofactor. Together, these results highlight the utility of these strategies in poising the cofactor at a well‐defined state for substrate‐ or intermediate‐trapping via controlled alteration of electron fluxes, which could prove beneficial for further elucidation of the mechanistic details of nitrogenase‐catalyzed reactions. Nitrogenase utilizes an ATP‐dependent reductase to deliver electrons to its catalytic component to enable two important reactions: the reduction of N2 to NH4+, and the reduction of CO to hydrocarbons. The two nitrogenase‐based reactions parallel the industrial Haber–Bosch and Fischer–Tropsch processes, yet they occur under ambient conditions. As such, understanding the enzymatic mechanism of nitrogenase is crucial for the future development of biomimetic strategies for energy‐efficient production of valuable chemical commodities. Mechanistic investigations of nitrogenase has long been hampered by the difficulty to trap substrates and intermediates relevant to the nitrogenase reactions. Recently, we have successfully captured CO on the Azotobacter vinelandii V‐nitrogenase via two approaches that alter the electron fluxes in a controlled manner: one approach utilizes an artificial electron donor to trap CO on the catalytic component of V‐nitrogenase in the resting state; whereas the other employs a mismatched reductase component to reduce the electron flux through the system and consequently accumulate CO on the catalytic component of V‐nitrogenase. Here we summarize the major outcome of these recent studies, which not only clarified the catalytic relevance of the one‐CO (lo‐CO) and multi‐CO (hi‐CO) bound states of nitrogenase, but also pointed to a potential competition between N2 and CO for binding to the same pair of reactive Fe sites across the sulfur belt of the cofactor. Together, these results highlight the utility of these strategies in poising the cofactor at a well‐defined state for substrate‐ or intermediate‐trapping via controlled alteration of electron fluxes, which could prove beneficial for further elucidation of the mechanistic details of nitrogenase‐catalyzed reactions. Two strategies have been used to capture CO on V‐nitrogenase as a substrate via controlled alteration of electron fluxes: one employs an artificial electron donor to uncouple CO binding from its subsequent reduction; whereas the other utilizes a mismatched reductase component to reduce the electron flux and “backs up” CO on the enzyme. Both strategies enable generation of a substrate‐bound state at a well‐defined state of the cofactor. Nitrogenase utilizes an ATP-dependent reductase to deliver electrons to its catalytic component to enable two important reactions: the reduction of N to NH , and the reduction of CO to hydrocarbons. The two nitrogenase-based reactions parallel the industrial Haber-Bosch and Fischer-Tropsch processes, yet they occur under ambient conditions. As such, understanding the enzymatic mechanism of nitrogenase is crucial for the future development of biomimetic strategies for energy-efficient production of valuable chemical commodities. Mechanistic investigations of nitrogenase has long been hampered by the difficulty to trap substrates and intermediates relevant to the nitrogenase reactions. Recently, we have successfully captured CO on the Azotobacter vinelandii V-nitrogenase via two approaches that alter the electron fluxes in a controlled manner: one approach utilizes an artificial electron donor to trap CO on the catalytic component of V-nitrogenase in the resting state; whereas the other employs a mismatched reductase component to reduce the electron flux through the system and consequently accumulate CO on the catalytic component of V-nitrogenase. Here we summarize the major outcome of these recent studies, which not only clarified the catalytic relevance of the one-CO (lo-CO) and multi-CO (hi-CO) bound states of nitrogenase, but also pointed to a potential competition between N and CO for binding to the same pair of reactive Fe sites across the sulfur belt of the cofactor. Together, these results highlight the utility of these strategies in poising the cofactor at a well-defined state for substrate- or intermediate-trapping via controlled alteration of electron fluxes, which could prove beneficial for further elucidation of the mechanistic details of nitrogenase-catalyzed reactions. |
Author | Stiebritz, Martin T. Hiller, Caleb J. Rettberg, Lee A. Hu, Yilin Lee, Chi Chung |
Author_xml | – sequence: 1 givenname: Caleb J. surname: Hiller fullname: Hiller, Caleb J. organization: University of California – sequence: 2 givenname: Chi Chung surname: Lee fullname: Lee, Chi Chung organization: University of California – sequence: 3 givenname: Martin T. surname: Stiebritz fullname: Stiebritz, Martin T. organization: University of California – sequence: 4 givenname: Lee A. surname: Rettberg fullname: Rettberg, Lee A. organization: University of California – sequence: 5 givenname: Yilin orcidid: 0000-0002-9088-2865 surname: Hu fullname: Hu, Yilin email: yilinh@uci.edu organization: University of California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30225894$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0UFPHCEUB3BibHS1Xj02JL30MlvgwTAczWStJrY9aM8TlnmzxczCFmZq_fZF19qkl5544f34h7x3Qg5DDEjIOWdLzpj46L7jdikYbxhoUAdkwZXgFehaHZIFM1JXtQJzTE5yvmeMmRrgiBwDE0I1Ri5Iup2SnXDjMdO7-GBTn2lrd9OcfNjQL35KcYPBZqS38zo_20xt6Ol1mDBtsffPNz-9pW0MRY8j9vRiLE07-RhoHOhqRFc6gV6O8y_Mb8mbwY4Zz17OU_LtcnXXXlU3Xz9dtxc3lZNgVDUAMguuhsEJANGALIXhTHPZ940WKNdyDU43Toi-FLape204ZwqsrPkAp-TDPneX4o8Z89RtfXY4jjZgnHMnODMgjFJ1oe__ofdxTqH8rqhGSKNZrYta7pVLMeeEQ7dLfmvTY8dZ97SN7mkb3es2yoN3L7Hzuozqlf8ZfwFmDx78iI__ievaq9Xnv-G_Ady4mPM |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_1c00914 crossref_primary_10_1021_acs_chemrev_9b00650 crossref_primary_10_1021_acs_chemrev_9b00704 crossref_primary_10_1039_D3DT02903D crossref_primary_10_1002_anie_202010790 crossref_primary_10_1002_anie_202015751 crossref_primary_10_1021_acs_chemrev_2c00612 crossref_primary_10_1002_ange_202015751 crossref_primary_10_1002_ange_202010790 |
Cites_doi | 10.1002/anie.201600010 10.1126/science.aar2765 10.1016/j.cep.2015.02.004 10.1021/ja971088s 10.1002/anie.201800189 10.1016/S0162-0134(02)00480-4 10.1021/ja054078x 10.1002/9783527656837.ch15 10.1021/cr950055x 10.1021/cr9500545 10.1039/c1dt10240k 10.1021/cr950057h 10.1002/anie.200301553 10.7554/eLife.11620 10.1021/ja9715096 10.1126/science.1256679 10.1038/nchembio.2428 10.1073/pnas.1519696112 10.1126/science.1206883 10.1002/chem.201704378 10.1021/ja1019657 10.1126/science.1191455 10.1002/ange.201800189 10.1073/pnas.0506967102 10.1021/cr00045a002 10.1039/b308188e 10.1002/ange.200301553 10.1073/pnas.0904408106 10.1038/360553a0 10.1021/bi972667c 10.1021/cr400641x 10.1002/ange.201600010 10.1039/C1DT11535A |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.201803735 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 2395 |
ExternalDocumentID | 10_1002_chem_201803735 30225894 CHEM201803735 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Foundation funderid: CHE-1651398; CHE-1608926 – fundername: Hellman Foundation – fundername: National Science Foundation grantid: CHE-1651398 – fundername: National Science Foundation grantid: CHE-1608926 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT NPM AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c4395-f3e0a3c63fc2332834fc2910714dd872e4b4b3c78c22db3ca86d7911053a461f3 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 |
IngestDate | Sat Aug 17 03:50:20 EDT 2024 Thu Oct 10 19:18:19 EDT 2024 Fri Aug 23 02:24:43 EDT 2024 Sat Sep 28 08:36:30 EDT 2024 Sat Aug 24 01:01:44 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | reductase catalysis CO artificial electron donor nitrogenase |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4395-f3e0a3c63fc2332834fc2910714dd872e4b4b3c78c22db3ca86d7911053a461f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9088-2865 |
PMID | 30225894 |
PQID | 2182497067 |
PQPubID | 986340 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2109329556 proquest_journals_2182497067 crossref_primary_10_1002_chem_201803735 pubmed_primary_30225894 wiley_primary_10_1002_chem_201803735_CHEM201803735 |
PublicationCentury | 2000 |
PublicationDate | February 18, 2019 |
PublicationDateYYYYMMDD | 2019-02-18 |
PublicationDate_xml | – month: 02 year: 2019 text: February 18, 2019 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 333 2010; 329 2015; 4 1997; 119 1992; 360 2011; 40 2017; 23 1996; 96 2003 2003; 42 115 2003 2003; 93 2014; 114 1998; 37 2016 2016; 55 128 1981; 81 2018; 359 2005; 102 2018 2018; 57 130 2015; 112 2017; 13 2005; 127 2010; 132 2015; 90 2013 2014; 345 2012; 41 2009; 106 e_1_2_6_10_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_8_2 e_1_2_6_9_1 e_1_2_6_7_2 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_25_1 e_1_2_6_23_2 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 23 start-page: 16152 year: 2017 publication-title: Chemistry – volume: 102 start-page: 13825 year: 2005 publication-title: Proc. Natl. Acad. Sci. USA – volume: 96 start-page: 2965 year: 1996 publication-title: Chem. Rev. – volume: 81 start-page: 447 year: 1981 publication-title: Chem. Rev. – volume: 13 start-page: 956 year: 2017 publication-title: Nat. Chem. Biol. – volume: 37 start-page: 9449 year: 1998 publication-title: Biochemistry – volume: 359 start-page: 1484 year: 2018 publication-title: Science – volume: 132 start-page: 12612 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 93 start-page: 11 year: 2003 publication-title: J. Inorg. Biochem. – start-page: 311 year: 2013 – volume: 42 115 start-page: 2004 2050 year: 2003 2003 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 90 start-page: 24 year: 2015 publication-title: Chem. Eng. Process. – volume: 106 start-page: 9209 year: 2009 end-page: 9214 publication-title: Proc. Natl. Acad. Sci. USA – volume: 41 start-page: 1118 year: 2012 publication-title: Dalton Trans. – volume: 119 start-page: 10121 year: 1997 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 5516 year: 2011 publication-title: Dalton Trans. – volume: 4 start-page: 11620 year: 2015 publication-title: Elife – start-page: 2590 year: 2003 publication-title: Chem. Commun. – volume: 96 start-page: 3013 year: 1996 publication-title: Chem. Rev. – volume: 119 start-page: 6450 year: 1997 publication-title: J. Am. Chem. Soc. – volume: 333 start-page: 753 year: 2011 publication-title: Science – volume: 96 start-page: 2983 year: 1996 publication-title: Chem. Rev. – volume: 55 128 start-page: 8216 8356 year: 2016 2016 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 360 start-page: 553 year: 1992 publication-title: Nature – volume: 345 start-page: 1620 year: 2014 publication-title: Science – volume: 57 130 start-page: 3411 3469 year: 2018 2018 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 114 start-page: 4041 year: 2014 publication-title: Chem. Rev. – volume: 329 start-page: 642 year: 2010 publication-title: Science – volume: 112 start-page: 13845 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 127 start-page: 15880 year: 2005 publication-title: J. Am. Chem. Soc. – ident: e_1_2_6_7_1 doi: 10.1002/anie.201600010 – ident: e_1_2_6_15_1 doi: 10.1126/science.aar2765 – ident: e_1_2_6_9_1 doi: 10.1016/j.cep.2015.02.004 – ident: e_1_2_6_27_1 doi: 10.1021/ja971088s – ident: e_1_2_6_23_1 doi: 10.1002/anie.201800189 – ident: e_1_2_6_29_1 doi: 10.1016/S0162-0134(02)00480-4 – ident: e_1_2_6_26_1 doi: 10.1021/ja054078x – ident: e_1_2_6_11_1 doi: 10.1002/9783527656837.ch15 – ident: e_1_2_6_1_1 doi: 10.1021/cr950055x – ident: e_1_2_6_2_1 doi: 10.1021/cr9500545 – ident: e_1_2_6_30_1 doi: 10.1039/c1dt10240k – ident: e_1_2_6_3_1 doi: 10.1021/cr950057h – ident: e_1_2_6_8_1 doi: 10.1002/anie.200301553 – ident: e_1_2_6_21_1 doi: 10.7554/eLife.11620 – ident: e_1_2_6_25_1 doi: 10.1021/ja9715096 – ident: e_1_2_6_20_1 doi: 10.1126/science.1256679 – ident: e_1_2_6_14_1 doi: 10.1038/nchembio.2428 – ident: e_1_2_6_22_1 doi: 10.1073/pnas.1519696112 – ident: e_1_2_6_6_1 doi: 10.1126/science.1206883 – ident: e_1_2_6_16_1 doi: 10.1002/chem.201704378 – ident: e_1_2_6_18_1 doi: 10.1021/ja1019657 – ident: e_1_2_6_5_1 doi: 10.1126/science.1191455 – ident: e_1_2_6_23_2 doi: 10.1002/ange.201800189 – ident: e_1_2_6_17_1 doi: 10.1073/pnas.0506967102 – ident: e_1_2_6_10_1 doi: 10.1021/cr00045a002 – ident: e_1_2_6_24_1 doi: 10.1039/b308188e – ident: e_1_2_6_8_2 doi: 10.1002/ange.200301553 – ident: e_1_2_6_12_1 doi: 10.1073/pnas.0904408106 – ident: e_1_2_6_19_1 doi: 10.1038/360553a0 – ident: e_1_2_6_28_1 doi: 10.1021/bi972667c – ident: e_1_2_6_4_1 doi: 10.1021/cr400641x – ident: e_1_2_6_7_2 doi: 10.1002/ange.201600010 – ident: e_1_2_6_13_1 doi: 10.1039/C1DT11535A |
SSID | ssj0009633 |
Score | 2.3734694 |
Snippet | Nitrogenase utilizes an ATP‐dependent reductase to deliver electrons to its catalytic component to enable two important reactions: the reduction of N2 to NH4+,... Nitrogenase utilizes an ATP-dependent reductase to deliver electrons to its catalytic component to enable two important reactions: the reduction of N to NH ,... Abstract Nitrogenase utilizes an ATP‐dependent reductase to deliver electrons to its catalytic component to enable two important reactions: the reduction of N... Nitrogenase utilizes an ATP-dependent reductase to deliver electrons to its catalytic component to enable two important reactions: the reduction of N2 to NH4 +... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2389 |
SubjectTerms | artificial electron donor Azotobacter Biomimetics Catalysis Chemical reactions Chemistry Commodities Electron density Fischer-Tropsch process Intermediates Nitrogenase Organic chemistry Reductase Reduction Substrates Sulfur |
Title | Strategies Towards Capturing Nitrogenase Substrates and Intermediates via Controlled Alteration of Electron Fluxes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201803735 https://www.ncbi.nlm.nih.gov/pubmed/30225894 https://www.proquest.com/docview/2182497067 https://search.proquest.com/docview/2109329556 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VcGgvhT4oaSlypUo9BRLbiZPjsrBClcqhAolb5IxtCbHKok0WIX49Y2cTuu2hUntzEkfxYzzzxZ75BuCrtmlOqFXG6LSJZUY_KGT0MHaIOXKXOGP9hv6Pi_z8Sn6_zq5_ieLv-SHGDTe_MoK-9gtc1-3xM2ko9clHkqdFIpTwUeapUN6n6_TnM38USVefS16q2HOwDqyNCT_efH3TKv0BNTeRazA9sx3QQ6N7j5Pbo1VXH-Hjb3yO_9OrXXi9xqVs0gvSG3hhm7fwcjqkg3sHy4HH1rbsMvjatmyq77oQ5sgubrrlgmSRbCLzuijUbZluDAt7jiFAxd-5v9Fs2rvHz61hk3lgdSbhYAvHztY5edhsvnqw7Xu4mp1dTs_jdcKGGAnXZLETNtECc-GQC0HARVKB8IhKpTGF4lbWshaoCuTcUEEXuVGkbUkRaJmnTuzBVrNo7D6wMkHDEUv057gokxqTrC6ywqBUqFwawbdhwqq7npej6hmYeeXHsBrHMIKDYT6r9fpsK89bL0tFpjqCL-NjGlF_XKIbu1j5OgmB2zLL8gg-9HIwfkoQ9MmKUkbAw2z-pQ2V57cYrz7-y0uf4BWVS-8wnhYHsNUtV_Yz4aGuPoTtycnpyewwyP4T-9YEtw |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZRLedNAC0ZC4pQ28SNOjtXS1QLtHtBW4hY5Y0eqWGWrTRYhfj1jZ5Nq4YBEb45jK37MeL7Y428A3huXZoRaZYy1sbFU9INCRg_jGjFDXie1dX5D_3Keza7k529q8Cb0d2F6fohxw81rRlivvYL7DenTW9ZQ6pS_Sp7midBC3YcHpPPCR2_4-PWWQYrkq48mL3XsWVgH3saEn-7W37VLf4HNXewajM_0EVRDs3ufk-8nm646wV9_MDreqV-P4WALTdlZL0tP4J5rnsL-ZIgI9wzWA5Wta9kiuNu2bGJuunDTkc2vu_WKxJHMIvPLUSjbMtNYFrYdwx0Vn_Pj2rBJ7yG_dJadLQOxM8kHW9XsfBuWh02Xm5-ufQ5X0_PFZBZvYzbESNBGxbVwiRGYiRq5EIRdJCUIkuhUWptr7mQlK4E6R84tJUyeWU0LLq0FRmZpLV7AXrNq3CGwIkHLEQv0R7kokwoTVeUqtyg16jqN4MMwY-VNT81R9iTMvPRjWI5jGMHRMKHlVkXb0lPXy0KTtY7g3fiaRtSfmJjGrTa-TEL4tlAqi-BlLwjjpwShH5UXMgIepvMfbSg9xcX49Op_Kr2F_dni8qK8-DT_8hoeUn7h_cfT_Aj2uvXGHRM86qo3QQF-AwM6B10 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL70KggJGQOKVNYjtOjtW2q_JaIdRKvUXO2JYqVtnVJosQv56xs0m75VAJbo5jK36MPV_smW8A3mub5oRaRYxOm1hI-kEhpYexQ8wxc4kz1h_of53lJ2fi07k8v-LF3_NDjAdufmWE_dov8KVxB5ekodQn70meFglXXN6GOyIn-Oth0fdLAikSrz6YvFCxJ2EdaBuT7GC7_rZa-gtrbkPXoHumD0EPre5NTn7sr7t6H39fI3T8n249ggcbYMoOe0l6DLds8wTuTYZ4cE9hNRDZ2padBmPblk30sgt-jmx20a0WJIykFJnfjELZlunGsHDoGDxUfM7PC80mvX383Bp2OA-0ziQdbOHY8SYoD5vO179s-wzOpsenk5N4E7EhRgI2MnbcJppjzh1mnBNyEZQgQKJSYUyhMitqUXNUBWaZoYQucqNou6WdQIs8dXwXdppFY18AKxM0GWKJ_iIXRVJjIutCFgaFQuXSCD4ME1Yte2KOqqdgzio_htU4hhHsDfNZbRZoW3nielEq0tURvBtf04j6-xLd2MXal0kI3ZZS5hE87-Vg_BQn7COLUkSQhdm8oQ2VJ7gYn17-S6W3cPfb0bT68nH2-RXcp-zSG4-nxR7sdKu1fU3YqKvfBPH_A-VZBgw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategies+Towards+Capturing+Nitrogenase+Substrates+and+Intermediates+via+Controlled+Alteration+of+Electron+Fluxes&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Hiller%2C+Caleb+J&rft.au=Chi+Chung+Lee&rft.au=Stiebritz%2C+Martin+T&rft.au=Rettberg%2C+Lee+A&rft.date=2019-02-18&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=25&rft.issue=10&rft.spage=2389&rft.epage=2395&rft_id=info:doi/10.1002%2Fchem.201803735&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |