Manipulating Intratumoral Fenton Chemistry for Enhanced Chemodynamic and Chemodynamic‐Synergized Multimodal Therapy

Chemodynamic therapy (CDT) uses the tumor microenvironment‐assisted intratumoral Fenton reaction for generating highly toxic hydroxyl free radicals (•OH) to achieve selective tumor treatment. However, the limited intratumoral Fenton reaction efficiency restricts the therapeutic efficacy of CDT. Rece...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 48; pp. e2104223 - n/a
Main Authors Zhou, Yaofeng, Fan, Siyu, Feng, Lili, Huang, Xiaolin, Chen, Xiaoyuan
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chemodynamic therapy (CDT) uses the tumor microenvironment‐assisted intratumoral Fenton reaction for generating highly toxic hydroxyl free radicals (•OH) to achieve selective tumor treatment. However, the limited intratumoral Fenton reaction efficiency restricts the therapeutic efficacy of CDT. Recent years have witnessed the impressive development of various strategies to increase the efficiency of intratumoral Fenton reaction. The introduction of these reinforcement strategies can dramatically improve the treatment efficiency of CDT and further promote the development of enhanced CDT (ECDT)‐based multimodal anticancer treatments. In this review, the authors systematically introduce these reinforcement strategies, from their basic working principles, reinforcement mechanisms to their representative clinical applications. Then, ECDT‐based multimodal anticancer therapy is discussed, including how to integrate these emerging Fenton reinforcement strategies for accelerating the development of multimodal anticancer therapy, as well as the synergistic mechanisms of ECDT and other treatment methods. Eventually, future direction and challenges of ECDT and ECDT‐based multimodal synergistic therapies are elaborated, highlighting the key scientific problems and unsolved technical bottlenecks to facilitate clinical translation. The advances in reinforcement strategies to increase the efficiency of intratumoral Fenton reaction are discussed. Then, multimodal anticancer therapies involving enhanced chemodynamic therapy and mechanisms of synergy are highlighted. Finally, the major challenges and further improvements of this evolving field are elaborated.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:0935-9648
1521-4095
1521-4095
DOI:10.1002/adma.202104223