Junctions in the meninges and marginal glia

The meninges of various mammals were prepared for examination with the electronmicroscope by thin sectioning or freeze-fracturing. Particular attention was given to the distribution of tight junctions in order to determine the basis for the meningeal barrier between the blood circulating in dural ve...

Full description

Saved in:
Bibliographic Details
Published inJournal of comparative neurology (1911) Vol. 164; no. 2; p. 127
Main Authors Nabeshima, S, Reese, T S, Landis, D M, Brightman, M W
Format Journal Article
LanguageEnglish
Published United States 15.11.1975
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:The meninges of various mammals were prepared for examination with the electronmicroscope by thin sectioning or freeze-fracturing. Particular attention was given to the distribution of tight junctions in order to determine the basis for the meningeal barrier between the blood circulating in dural vessels and the cerebrospinal fluid in the subarachnoid space. While some dural blood vessels are fenestrated, those in the subarachnoid space are not and their component endothelial cells are joined by an extensive system of tight junctions. An extensive and continuous system of tight junctions was also found in a layer of specialized cells at the border of the arachnoid with the dura. This arachnoid barrier layer is apparently the only basis of the meningeal barrier because often cellular layers in the dura and arachnoid lack tight junctions although they are linked by gap junctions and desmosomes. In particular, tight junctions are lacking at the border of the "subdural space" which is actually a fascial plane within the dura. Tight junctions are also lacking between astrocytes at the surface of the brain but these cells are linked by gap junctions and a new type of intercellular junction. The distribution of these junctions, as well as assemblies of intramembranous particles at the astrocytic border, raises the question whether this layer might have a role in the exchange of certain substances between the brain and cerebrospinal fluid.
ISSN:0021-9967
DOI:10.1002/cne.901640202