High‐latitude circulation in giant planet magnetospheres

We follow‐up the proposal by Cowley et al. (2004) that the plasma circulation in the magnetospheres of the giant planets is a combination of two cycles or circulation systems. The Vasyliunas cycle transports heavy material ionized deep within the magnetosphere eventually to loss in the magnetotail....

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Space physics Vol. 121; no. 6; pp. 5394 - 5403
Main Authors Southwood, D. J., Chané, E.
Format Journal Article
LanguageEnglish
Published 01.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We follow‐up the proposal by Cowley et al. (2004) that the plasma circulation in the magnetospheres of the giant planets is a combination of two cycles or circulation systems. The Vasyliunas cycle transports heavy material ionized deep within the magnetosphere eventually to loss in the magnetotail. The second cycle is driven by magnetic reconnection between the planetary and the solar wind magnetic fields (the Dungey cycle) and is found on flux tubes poleward of those of the Vasyliunas cycle. We examine features of the Dungey system, particularly what occurs out of the equatorial plane. The Dungey cycle requires reconnection on the dayside, and we suggest that at the giant planets the dayside reconnection occurs preferentially in the morning sector. Second, we suggest that most of the solar wind material that enters through reconnection on to open flux tubes on the dayside never gets trapped on closed field lines but makes less than one circuit of the planet and exits down tail. In its passage to the nightside, the streaming ex‐solar wind material is accelerated centrifugally by the planetary rotation primarily along the field; thus, in the tail it will appear very like a planetary wind. The escaping wind will be found on the edges of the tail plasma sheet, and reports of light ion streams in the tail are likely due to this source. The paper concludes with a discussion of high‐latitude circulation in the absence of reconnection between the solar wind and planetary field. Key Points Implications of the high invariant latitude Dungey cycle are described Midday equatorial flow blocking by heavy material causes reconnection preferentially before noon Solar wind entry particles are lost each rotation by a downtail wind flanking the plasma sheet
ISSN:2169-9380
2169-9402
DOI:10.1002/2015JA022310