Allosteric regulatory control in dihydrofolate reductase is revealed by dynamic asymmetry

We investigated the relationship between mutations and dynamics in Escherichia coli dihydrofolate reductase (DHFR) using computational methods. Our study focused on the M20 and FG loops, which are known to be functionally important and affected by mutations distal to the loops. We used molecular dyn...

Full description

Saved in:
Bibliographic Details
Published inProtein science Vol. 32; no. 8; pp. e4700 - n/a
Main Authors Kazan, I. Can, Mills, Jeremy H., Ozkan, S. Banu
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.08.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We investigated the relationship between mutations and dynamics in Escherichia coli dihydrofolate reductase (DHFR) using computational methods. Our study focused on the M20 and FG loops, which are known to be functionally important and affected by mutations distal to the loops. We used molecular dynamics simulations and developed position‐specific metrics, including the dynamic flexibility index (DFI) and dynamic coupling index (DCI), to analyze the dynamics of wild‐type DHFR and compared our results with existing deep mutational scanning data. Our analysis showed a statistically significant association between DFI and mutational tolerance of the DHFR positions, indicating that DFI can predict functionally beneficial or detrimental substitutions. We also applied an asymmetric version of our DCI metric (DCIasym) to DHFR and found that certain distal residues control the dynamics of the M20 and FG loops, whereas others are controlled by them. Residues that are suggested to control the M20 and FG loops by our DCIasym metric are evolutionarily nonconserved; mutations at these sites can enhance enzyme activity. On the other hand, residues controlled by the loops are mostly deleterious to function when mutated and are also evolutionary conserved. Our results suggest that dynamics‐based metrics can identify residues that explain the relationship between mutation and protein function or can be targeted to rationally engineer enzymes with enhanced activity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Review Editor: Nir Ben‐Tal.
ISSN:0961-8368
1469-896X
1469-896X
DOI:10.1002/pro.4700