Flexible Sensing Electronics for Wearable/Attachable Health Monitoring
Wearable or attachable health monitoring smart systems are considered to be the next generation of personal portable devices for remote medicine practices. Smart flexible sensing electronics are components crucial in endowing health monitoring systems with the capability of real‐time tracking of phy...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 13; no. 25 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Wearable or attachable health monitoring smart systems are considered to be the next generation of personal portable devices for remote medicine practices. Smart flexible sensing electronics are components crucial in endowing health monitoring systems with the capability of real‐time tracking of physiological signals. These signals are closely associated with body conditions, such as heart rate, wrist pulse, body temperature, blood/intraocular pressure and blood/sweat bio‐information. Monitoring such physiological signals provides a convenient and non‐invasive way for disease diagnoses and health assessments. This Review summarizes the recent progress of flexible sensing electronics for their use in wearable/attachable health monitoring systems. Meanwhile, we present an overview of different materials and configurations for flexible sensors, including piezo‐resistive, piezo‐electrical, capacitive, and field effect transistor based devices, and analyze the working principles in monitoring physiological signals. In addition, the future perspectives of wearable healthcare systems and the technical demands on their commercialization are briefly discussed.
Flexible sensing electronics play crucial roles in wearable health monitoring systems, which is considered to be a convenient and effective way for disease diagnoses and health assessments. The advances of flexible sensing electronics and related nanomaterials in healthcare are summarized. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ISSN: | 1613-6810 1613-6829 1613-6829 |
DOI: | 10.1002/smll.201602790 |