New approaches targeting brown adipose tissue transplantation as a therapy in obesity

[Display omitted] Brown adipose tissue (BAT) is raising high expectations as a potential target in the fight against metabolic disorders such as obesity and type 2 diabetes. BAT utilizes fuels such as fatty acids to maintain body temperature by uncoupling mitochondrial electron transport to produce...

Full description

Saved in:
Bibliographic Details
Published inBiochemical pharmacology Vol. 155; pp. 346 - 355
Main Authors Soler-Vázquez, M. Carmen, Mera, Paula, Zagmutt, Sebastián, Serra, Dolors, Herrero, Laura
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 01.09.2018
Elsevier B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] Brown adipose tissue (BAT) is raising high expectations as a potential target in the fight against metabolic disorders such as obesity and type 2 diabetes. BAT utilizes fuels such as fatty acids to maintain body temperature by uncoupling mitochondrial electron transport to produce heat instead of ATP. This process is called thermogenesis. BAT was considered to be exclusive to rodents and human neonates. However, in the last decade several studies have demonstrated that BAT is not only present but also active in adult humans and that its activity is reduced in several pathological conditions, such as aging, obesity, and diabetes. Thus, tremendous efforts are being made by the scientific community to enhance either BAT mass or activity. Several activators of thermogenesis have been described, such as natriuretic peptides, bone morphogenic proteins, or fibroblast growth factor 21. Furthermore, recent studies have tested a therapeutic approach to directly increase BAT mass by the implantation of either adipocytes or fat tissue. This approach might have an important future in regenerative medicine and in the fight against metabolic disorders. Here, we review the emerging field of BAT transplantation including the various sources of mesenchymal stem cell isolation in rodents and humans and the described metabolic outcomes of adipocyte cell transplantation and BAT transplantation in obesity.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:0006-2952
1873-2968
DOI:10.1016/j.bcp.2018.07.022