A Parallel Multi-Modal Factorized Bilinear Pooling Fusion Method Based on the Semi-Tensor Product for Emotion Recognition

Multi-modal fusion can exploit complementary information from various modalities and improve the accuracy of prediction or classification tasks. In this paper, we propose a parallel, multi-modal, factorized, bilinear pooling method based on a semi-tensor product (STP) for information fusion in emoti...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 24; no. 12; p. 1836
Main Authors Liu, Fen, Chen, Jianfeng, Li, Kemeng, Tan, Weijie, Cai, Chang, Ayub, Muhammad Saad
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 16.12.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multi-modal fusion can exploit complementary information from various modalities and improve the accuracy of prediction or classification tasks. In this paper, we propose a parallel, multi-modal, factorized, bilinear pooling method based on a semi-tensor product (STP) for information fusion in emotion recognition. Initially, we apply the STP to factorize a high-dimensional weight matrix into two low-rank factor matrices without dimension matching constraints. Next, we project the multi-modal features to the low-dimensional matrices and perform multiplication based on the STP to capture the rich interactions between the features. Finally, we utilize an STP-pooling method to reduce the dimensionality to get the final features. This method can achieve the information fusion between modalities of different scales and dimensions and avoids data redundancy due to dimension matching. Experimental verification of the proposed method on the emotion-recognition task using the IEMOCAP and CMU-MOSI datasets showed a significant reduction in storage space and recognition time. The results also validate that the proposed method improves the performance and reduces both the training time and the number of parameters.
AbstractList Multi-modal fusion can exploit complementary information from various modalities and improve the accuracy of prediction or classification tasks. In this paper, we propose a parallel, multi-modal, factorized, bilinear pooling method based on a semi-tensor product (STP) for information fusion in emotion recognition. Initially, we apply the STP to factorize a high-dimensional weight matrix into two low-rank factor matrices without dimension matching constraints. Next, we project the multi-modal features to the low-dimensional matrices and perform multiplication based on the STP to capture the rich interactions between the features. Finally, we utilize an STP-pooling method to reduce the dimensionality to get the final features. This method can achieve the information fusion between modalities of different scales and dimensions and avoids data redundancy due to dimension matching. Experimental verification of the proposed method on the emotion-recognition task using the IEMOCAP and CMU-MOSI datasets showed a significant reduction in storage space and recognition time. The results also validate that the proposed method improves the performance and reduces both the training time and the number of parameters.
Audience Academic
Author Ayub, Muhammad Saad
Liu, Fen
Li, Kemeng
Cai, Chang
Chen, Jianfeng
Tan, Weijie
AuthorAffiliation 2 College of Mathematics and Computer Science, Yan’an University, Yan’an 716000, China
1 School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
3 State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
AuthorAffiliation_xml – name: 1 School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
– name: 3 State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
– name: 2 College of Mathematics and Computer Science, Yan’an University, Yan’an 716000, China
Author_xml – sequence: 1
  givenname: Fen
  orcidid: 0000-0002-6099-3900
  surname: Liu
  fullname: Liu, Fen
  organization: College of Mathematics and Computer Science, Yan'an University, Yan'an 716000, China
– sequence: 2
  givenname: Jianfeng
  orcidid: 0000-0002-7281-7138
  surname: Chen
  fullname: Chen, Jianfeng
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
– sequence: 3
  givenname: Kemeng
  surname: Li
  fullname: Li, Kemeng
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
– sequence: 4
  givenname: Weijie
  orcidid: 0000-0001-6590-5757
  surname: Tan
  fullname: Tan, Weijie
  organization: State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
– sequence: 5
  givenname: Chang
  surname: Cai
  fullname: Cai, Chang
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
– sequence: 6
  givenname: Muhammad Saad
  surname: Ayub
  fullname: Ayub, Muhammad Saad
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36554241$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1v1DAQhiNURD_gwB9AkbjQQ4q_4sQXpG3VhUpdUcHeLa893vUqGxc7QSq_nkm3rFrkg8fjZ97xjOe0OOpjD0XxnpILzhX5DExQRlsuXxUnlChVCU7I0TP7uDjNeUsI44zKN8Uxl3UtMOikeJiVdyaZroOuXIzdEKpFdKYr58YOMYU_4MrL0IUeTCrvYkRrXc7HHGJfLmDYRLw2GSE8Dxsof8IuVEvoc0Q8RTfaofRoX-_iMMX8ABvXfZjst8Vrb7oM7572s2I5v15efatuv3-9uZrdVlbwdqhAeStrRUUjlFNghVoBq6VQnIJnWDaTEqRzTJGWIcJs68WKrSiXykrLz4qbvayLZqvvU9iZ9KCjCfrREdNamzQE24EmdMWkb4VroREN88ZRA954yWtcSqLWl73W_bjagbPQD9i6F6Ivb_qw0ev4W6umaVpBUeDTk0CKv0bIg96FbKHrTA9xzJo1dUspJ3LK9fE_dBvH1GOnJkrKVgo2URd7am2wgND7iHktLocfYXFKfED_rBF1Q1QrBAac7wNsijkn8IfXU6KnYdKHYUL2w_NyD-S_6eF_AcuoxSs
CitedBy_id crossref_primary_10_3390_e25101440
crossref_primary_10_1016_j_dsp_2023_104265
Cites_doi 10.1007/s10579-008-9076-6
10.18653/v1/D17-1115
10.1145/3242969.3264989
10.1145/3340555.3355719
10.18653/v1/P18-1209
10.1109/TMM.2018.2794985
10.1007/s11042-009-0344-2
10.1007/BF02289464
10.1145/2663204.2663260
10.1142/8323
10.1609/aaai.v32i1.12021
10.3390/e23101349
10.1109/TMM.2012.2189550
10.1109/IGARSS.2018.8519360
10.1109/ICASSP.2014.6853739
10.24963/ijcai.2018/365
10.1155/2018/3125879
10.1007/BF02714570
10.18653/v1/D16-1044
10.1109/TAC.2010.2043294
10.18653/v1/2020.challengehml-1.4
10.1137/S0036144598340483
10.1155/2020/8269683
10.1142/S1793351X13400023
10.1109/ICCV.2017.202
10.1109/TMM.2008.921737
10.1109/TASLP.2021.3096037
10.1609/aaai.v32i1.12024
10.1109/IJCNN48605.2020.9206964
10.1109/ACCESS.2019.2916887
10.3115/v1/D14-1162
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID NPM
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/e24121836
DatabaseName PubMed
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
Civil Engineering Abstracts
Engineering Database
Technology Collection
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
Engineering Collection
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed
CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_01b26f84d8e7472fad1aefaf63535396
A745709844
10_3390_e24121836
36554241
Genre Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Shaanxi Province
  grantid: 2020JM-554
– fundername: Yan’an University Scientific Research Project
  grantid: YDY2019-18
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
ABDBF
ABJCF
ACIWK
ADBBV
AEGXH
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
NPM
OK1
PGMZT
PIMPY
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
AAYXX
AFPKN
CITATION
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c438t-e9fc65914749d9ec49be2564931ef2121266e6dd2908249d2c8f4b2b1369c6c3
IEDL.DBID RPM
ISSN 1099-4300
IngestDate Tue Oct 22 15:15:04 EDT 2024
Tue Sep 17 21:32:15 EDT 2024
Fri Oct 25 08:28:03 EDT 2024
Thu Oct 10 18:58:36 EDT 2024
Tue Nov 12 22:48:56 EST 2024
Wed Aug 14 12:35:20 EDT 2024
Wed Oct 16 00:41:48 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords multi-modal information fusion
emotion recognition
low-rank matrix
semi-tensor product
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-e9fc65914749d9ec49be2564931ef2121266e6dd2908249d2c8f4b2b1369c6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7281-7138
0000-0001-6590-5757
0000-0002-6099-3900
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777841/
PMID 36554241
PQID 2756686426
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_01b26f84d8e7472fad1aefaf63535396
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9777841
proquest_miscellaneous_2758113066
proquest_journals_2756686426
gale_infotracacademiconefile_A745709844
crossref_primary_10_3390_e24121836
pubmed_primary_36554241
PublicationCentury 2000
PublicationDate 20221216
PublicationDateYYYYMMDD 2022-12-16
PublicationDate_xml – month: 12
  year: 2022
  text: 20221216
  day: 16
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Xie (ref_12) 2013; 7
Busso (ref_38) 2008; 42
Liu (ref_36) 2006; 51
ref_14
ref_13
ref_33
ref_31
ref_30
Chen (ref_32) 2018; 20
Cheng (ref_34) 2010; 55
ref_19
Tucker (ref_35) 1966; 31
ref_39
ref_15
Wu (ref_7) 2020; 2020
Cheng (ref_29) 2001; 44
Ahuja (ref_1) 2018; 41
Mansoorizadeh (ref_17) 2010; 49
Bai (ref_10) 2022; 2022
Guo (ref_11) 2019; 7
Wang (ref_18) 2012; 14
ref_25
ref_24
ref_23
ref_22
ref_20
Habibian (ref_2) 2016; 39
ref_40
ref_3
Lee (ref_9) 2018; 2018
ref_28
ref_27
ref_26
ref_8
Hubert (ref_37) 2000; 42
ref_5
Zhou (ref_16) 2021; 29
ref_4
Zeng (ref_21) 2008; 10
ref_6
References_xml – volume: 42
  start-page: 335
  year: 2008
  ident: ref_38
  article-title: IEMOCAP: Interactive Emotional Dyadic Motion Capture Database
  publication-title: Lang. Resour. Eval.
  doi: 10.1007/s10579-008-9076-6
  contributor:
    fullname: Busso
– ident: ref_5
  doi: 10.18653/v1/D17-1115
– ident: ref_20
  doi: 10.1145/3242969.3264989
– ident: ref_19
  doi: 10.1145/3340555.3355719
– ident: ref_3
– ident: ref_24
– ident: ref_26
  doi: 10.18653/v1/P18-1209
– volume: 20
  start-page: 1973
  year: 2018
  ident: ref_32
  article-title: A novel digital watermarking based on general non-negative matrix factorization
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2018.2794985
  contributor:
    fullname: Chen
– volume: 49
  start-page: 277
  year: 2010
  ident: ref_17
  article-title: Multimodal information fusion application to human emotion recognition from face and speech
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-009-0344-2
  contributor:
    fullname: Mansoorizadeh
– volume: 31
  start-page: 279
  year: 1966
  ident: ref_35
  article-title: Some mathematical notes on three-mode factor analysis
  publication-title: Psychometrika
  doi: 10.1007/BF02289464
  contributor:
    fullname: Tucker
– volume: 39
  start-page: 2013
  year: 2016
  ident: ref_2
  article-title: VideoStory Embeddings Recognize Events when Examples are Scarce
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  contributor:
    fullname: Habibian
– ident: ref_4
  doi: 10.1145/2663204.2663260
– ident: ref_33
  doi: 10.1142/8323
– ident: ref_28
  doi: 10.1609/aaai.v32i1.12021
– ident: ref_6
  doi: 10.3390/e23101349
– volume: 14
  start-page: 597
  year: 2012
  ident: ref_18
  article-title: Kernel cross-modal factor analysis for information fusion with application to bimodal emotion recognition
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2012.2189550
  contributor:
    fullname: Wang
– volume: 41
  start-page: 423
  year: 2018
  ident: ref_1
  article-title: Multimodal machine learning: A survey and taxonomy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  contributor:
    fullname: Ahuja
– ident: ref_30
  doi: 10.1109/IGARSS.2018.8519360
– ident: ref_40
  doi: 10.1109/ICASSP.2014.6853739
– ident: ref_8
  doi: 10.24963/ijcai.2018/365
– ident: ref_14
– volume: 2018
  start-page: 3125879
  year: 2018
  ident: ref_9
  article-title: Multimodal feature learning for video captioning
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2018/3125879
  contributor:
    fullname: Lee
– volume: 44
  start-page: 195
  year: 2001
  ident: ref_29
  article-title: Semi-tensor product of matrices and its application to Morgen’s problem
  publication-title: Sci. China Ser. Inf. Sci.
  doi: 10.1007/BF02714570
  contributor:
    fullname: Cheng
– ident: ref_23
  doi: 10.18653/v1/D16-1044
– volume: 55
  start-page: 2251
  year: 2010
  ident: ref_34
  article-title: A linear representation of dynamics of Boolean networks
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2010.2043294
  contributor:
    fullname: Cheng
– volume: 2022
  start-page: 1
  year: 2022
  ident: ref_10
  article-title: Multimodal Urban Sound Tagging with Spatiotemporal Context
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  contributor:
    fullname: Bai
– ident: ref_15
  doi: 10.18653/v1/2020.challengehml-1.4
– volume: 42
  start-page: 68
  year: 2000
  ident: ref_37
  article-title: Two purposes for matrix factorization: A historical appraisal
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144598340483
  contributor:
    fullname: Hubert
– volume: 2020
  start-page: 8269683
  year: 2020
  ident: ref_7
  article-title: The recognition of teacher behavior based on multimodal information fusion
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2020/8269683
  contributor:
    fullname: Wu
– volume: 7
  start-page: 25
  year: 2013
  ident: ref_12
  article-title: Multimodal Information Fusion of Audio Emotion Recognition Based on Kernel Entropy Component Analysis
  publication-title: Int. J. Semant. Comput.
  doi: 10.1142/S1793351X13400023
  contributor:
    fullname: Xie
– ident: ref_27
  doi: 10.1109/ICCV.2017.202
– volume: 10
  start-page: 570
  year: 2008
  ident: ref_21
  article-title: Audio–visual affective expression recognition through multistream fused HMM
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2008.921737
  contributor:
    fullname: Zeng
– ident: ref_13
– volume: 51
  start-page: 241
  year: 2006
  ident: ref_36
  article-title: Non-negative matrix factorization and its application in pattern recognition
  publication-title: Chin. Sci. Bull.
  contributor:
    fullname: Liu
– volume: 29
  start-page: 2617
  year: 2021
  ident: ref_16
  article-title: Information fusion in attention networks using adaptive and multi-level factorized bilinear pooling for audio-visual emotion recognition
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2021.3096037
  contributor:
    fullname: Zhou
– ident: ref_22
– ident: ref_25
  doi: 10.1609/aaai.v32i1.12024
– ident: ref_31
  doi: 10.1109/IJCNN48605.2020.9206964
– volume: 7
  start-page: 63373
  year: 2019
  ident: ref_11
  article-title: Deep Multimodal Representation Learning: A Survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916887
  contributor:
    fullname: Guo
– ident: ref_39
  doi: 10.3115/v1/D14-1162
SSID ssj0023216
Score 2.349786
Snippet Multi-modal fusion can exploit complementary information from various modalities and improve the accuracy of prediction or classification tasks. In this paper,...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1836
SubjectTerms Costs
Data integration
Emotion recognition
Emotions
low-rank matrix
Matching
Mathematical analysis
multi-modal information fusion
Redundancy
semi-tensor product
Tensors
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ba9swFBajp13GRrvWW1u0MejJNLJl2TompaEMMsqWQm9CtqQtsNkjSw7br-_3LCfE7LDLsC-2HkbWk_x9T5a-x9gHraWf1EWG2CSEVNpGp2DVRepCbqtgQyEcTegvPqm7B_nxsXg8SPVFa8KiPHBsuOuJqDMVKukqD-abBeuE9XgIgBKHjmLbE70LpoZQK8-EijpCOYL6aw-cIi6gRujTi_T__Sk-wKLxOskD4Jm_ZC8Gxsinsaav2DPfHrPfU35v15QH5Tvv99Cmi87Bat6nz1n98Y7PVsQg7Zrfd5SY5yufb2lmjC_6nNF8BvhyHNdggPyL_7FKl4hoO5hHDVgONstvY5If_nm3zKhrT9hyfru8uUuHLAppI_Nqk3odGlVoIUupnfaN1LUHz5E6Fz4AuAQg2ivnMkp-DpOsqYKss1rkSjeqyV-zo7Zr_RnjoI4gg6UIQVgSYtcK9Bz0q3Qu2MLWCXu_a1zzM2plGMQY5AGz90DCZtTsewOSt-5vwOlmcLr5l9MTdkVOMzQI4ZnGDnsJUE-SszLTUhblRFdSJux851czjM5fhiTvVYXICw96ty_GuKKfJbb13ba3qQQAXsHmNHaDfZ1zBRKGF0pYOeogo5cal7Srb712N-g2_el98z9a4S17ntFmDIFTnbOjzXrrL0CRNvVlPxqeADVfD8U
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLggKl6BtjIIiZPVdeI49gntVg0V0qIKFqk3y_GjrARJ2e4e4Ncz42RDIyS0e9lktHIyY883fnwfIW-1FmHWlDnUJjEyYZ1mgKpL5mNhVbSx5B4n9Jef5MVX8fGqvBom3G6HbZX7MTEN1L5zOEd-ijTlUgFalu9vfjJUjcLV1UFC4z55wPOqwuJL1R_GgqvIuezZhAoo7U8DZCtEBHKSgxJV_78D8p2MNN0teSf91I_JowE30nnv6ENyL7RPyK85vbQbVEP5TtNJWrbsPFjVSURn_Tt4ulgjjrQbetmhPM81rXc4P0aXSTmaLiCJeQq_AQfSL-HHmq2gru3AvGeCpYBp6Xkv9UM_7zcbde1TsqrPV2cXbNBSYE4UasuCjk6WmotKaK-DE7oJgHaELniIkL44JOogvc9RAh1McqeiaPKGF1I76Ypn5KDt2vCCUACQAAkrHiO3SMeuJYB0AGGV99GWtsnIm_3LNTc9Y4aBSgM9YEYPZGSBr300QJLrdKHbXJuhz5gZb3IZlfAqQNGTR-u5DRA_gJHgo-FP3qHTDHZF8Iyzw4kCaCeSWpl5JcpqppUQGTna-9UMffTW_I2ojLweb0PvwiUT24Zul2wUhzQvweZ5HwZjmwsJUAweKCPVJEAmDzW9066_JQZvAN243vvy_816RR7meNiCw1cekYPtZheOAQJtm5MU538AR_QHNA
  priority: 102
  providerName: ProQuest
Title A Parallel Multi-Modal Factorized Bilinear Pooling Fusion Method Based on the Semi-Tensor Product for Emotion Recognition
URI https://www.ncbi.nlm.nih.gov/pubmed/36554241
https://www.proquest.com/docview/2756686426
https://search.proquest.com/docview/2758113066
https://pubmed.ncbi.nlm.nih.gov/PMC9777841
https://doaj.org/article/01b26f84d8e7472fad1aefaf63535396
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb5swFLaa7rLLtGm_0nWRN03aiSYGY_AxqUKrSamiLpNyQwbbHVIDVZYc1r--nw1EjXabQEjAAxneM-975vl7hHyTkptJEYeITawNuCplAFQdB9pGKrXKxky7Af3Fjbj-xX-s4_UJifu5MD5pvyyqi_p-c1FXv31u5cOmHPd5YuPl4hKYxf0uGw_IAAbah-hdlBWFTLQUQhHi-bGBi3IwQBw5Hs_P_-9X-JkbOk6RfOZzstfkVQcW6bRt1BtyYuq35O-ULtXWlUC5p376bLBoNKQyXzmnejSazioHHtWWLhtXk-eOZns3KEYXvlw0ncFzaYp9gD_602yqYIVgtoF4S_9KAWTpvK3vQ2_7DKOmfkdW2Xx1eR10BRSCkkfpLjDSliKWjCdcamlKLgsDiMNlxIyFz2LwzkZoHbq65xAJy9TyIixYJGQpyug9Oa2b2nwkFKgRODBh1jLlONilADIH8kq0tipWxZB87V9u_tDSZOQIL5wG8oMGhmTmXvtBwDFb-wPN9i7v9JtPWBEKm3KdGkQ6oVWaKQOjATDCInGT705puet_0EypumkEaKdjssqnCY-TiUw5H5LzXq951zH_5I7tXqQIunCjL4fT6FLuP4mqTbP3MimDbxeQ-dCawaHNkQD-wgMNSXJkIEcPdXwGVuxpuzurPfvvKz-Rl6GbfMGwinNyutvuzWdAol0xIoM0uxqRF7P5zfJ25AcWsL1as5HvHE_6zxLa
link.rule.ids 230,315,730,783,787,867,888,2109,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,53804,53806,74363,74630
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nj9MwELVg9wAXBOIrsIBBSJyirRPHiU-oRa0KbKtqKdLeIie2l0qQLN32AL-eN0kaNkJCySXJKLI9Y88bf7xh7K3W0o2KJEJs4n0oTalDoOoktD42mTc-EZYm9BdLNf8qP10kF92E23W3rfIwJjYDta1LmiM_JZpylQEtq_dXP0PKGkWrq10KjdvsmKiqEHwdT6bL1XkfcsWRUC2fUIzg_tTBXxEmUAMv1JD1_zsk3_BJw_2SNxzQ7D671yFHPm5V_YDdctVD9mvMV2ZL-VC-8-YsbbioLaRmTRqdzW9n-WRDSNJs-aqmBD2XfLanGTK-aHJH8wncmOV4BhLkX9yPTbhGZFtDvOWC5UC1fNom--Hnh-1GdfWIrWfT9Yd52GVTCEu0zS502pcq0UKmUlvtSqkLB7wjdSychwMTcNVOWRtREnSIRGXmZREVIla6VGX8mB1VdeWeMg4ICVCYCu-FIUJ2rQDTAcNSa71JTBGwN4fGza9azowcsQZpIO81ELAJNXsvQDTXzYt6e5l3vSYfiSJSPpM2cwh7Im-sMA4WBJSES-Mn70hpOXVGaKY03ZkClJNorfJxKpN0pDMpA3Zy0Gve9dLr_K9NBex1_xn9ixZNTOXqfSOTCTh6BZknrRn0ZY4VwBgqFLB0YCCDSg2_VJtvDYc3YDet-D77f7FesTvz9eIsP_u4_Pyc3Y3o6IXArU7Y0W67dy8AiHbFy87q_wAzXQuF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELagKyEuaBGvsAsYhMQpah07TnxCLTRaHq2qpUh7s5zYXipBsnTbA_x6ZhI3bISEkkuSUeRkxp5v7PF8hLxWSrhJmSYQm3gfC1OpGFB1GlvPTe6NT5nFCf3FUp59FR8v0ouQ_3Qd0ioPY2I7UNumwjnyMZYplzmgZTn2IS1i9b54e_UzRgYpXGkNdBq3yVEmJJ-MyNFsvlyd9-EXT5jsagtxCPTHDnwX4gM58Eht4f5_h-cb_mmYO3nDGRXH5F5AkXTaqf0-ueXqB-TXlK7MFrlRvtN2X228aCxIFS2lzua3s3S2QVRptnTVIFnPJS32OFtGFy2PNJ2BS7MUrgEV0i_uxyZeQ5TbgHhXF5YCwqXzjviHnh9Sj5r6IVkX8_W7szgwK8SV4PkudspXMlVMZEJZ5SqhSgfYRyjOnAdnxsBtO2ltgoToIJJUuRdlUjIuVSUr_oiM6qZ2TwgFOAkAMWPeM4PF2ZUEyA6QLLPWm9SUEXl1-Ln6qqufoSHuQA3oXgMRmeFv7wWw5HV7o9le6tCD9ISVifS5sLmDECjxxjLjwJoAMcGh4CVvUGkaOyZopjJhfwG0E0tc6Wkm0myiciEicnrQqw499lr_ta-IvOwfQ1_DBRRTu2bfyuQMnL4EmcedGfRt5hKAGXxQRLKBgQw-avik3nxr63kDBMfV36f_b9YLcgcMXn_-sPx0Qu4muAuDwSlPyWi33btngI125fNg9H8AmqYPsw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Parallel+Multi-Modal+Factorized+Bilinear+Pooling+Fusion+Method+Based+on+the+Semi-Tensor+Product+for+Emotion+Recognition&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Fen+Liu&rft.au=Jianfeng+Chen&rft.au=Kemeng+Li&rft.au=Weijie+Tan&rft.date=2022-12-16&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=24&rft.issue=12&rft.spage=1836&rft_id=info:doi/10.3390%2Fe24121836&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_01b26f84d8e7472fad1aefaf63535396
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon