A Parallel Multi-Modal Factorized Bilinear Pooling Fusion Method Based on the Semi-Tensor Product for Emotion Recognition
Multi-modal fusion can exploit complementary information from various modalities and improve the accuracy of prediction or classification tasks. In this paper, we propose a parallel, multi-modal, factorized, bilinear pooling method based on a semi-tensor product (STP) for information fusion in emoti...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 24; no. 12; p. 1836 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
16.12.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multi-modal fusion can exploit complementary information from various modalities and improve the accuracy of prediction or classification tasks. In this paper, we propose a parallel, multi-modal, factorized, bilinear pooling method based on a semi-tensor product (STP) for information fusion in emotion recognition. Initially, we apply the STP to factorize a high-dimensional weight matrix into two low-rank factor matrices without dimension matching constraints. Next, we project the multi-modal features to the low-dimensional matrices and perform multiplication based on the STP to capture the rich interactions between the features. Finally, we utilize an STP-pooling method to reduce the dimensionality to get the final features. This method can achieve the information fusion between modalities of different scales and dimensions and avoids data redundancy due to dimension matching. Experimental verification of the proposed method on the emotion-recognition task using the IEMOCAP and CMU-MOSI datasets showed a significant reduction in storage space and recognition time. The results also validate that the proposed method improves the performance and reduces both the training time and the number of parameters. |
---|---|
AbstractList | Multi-modal fusion can exploit complementary information from various modalities and improve the accuracy of prediction or classification tasks. In this paper, we propose a parallel, multi-modal, factorized, bilinear pooling method based on a semi-tensor product (STP) for information fusion in emotion recognition. Initially, we apply the STP to factorize a high-dimensional weight matrix into two low-rank factor matrices without dimension matching constraints. Next, we project the multi-modal features to the low-dimensional matrices and perform multiplication based on the STP to capture the rich interactions between the features. Finally, we utilize an STP-pooling method to reduce the dimensionality to get the final features. This method can achieve the information fusion between modalities of different scales and dimensions and avoids data redundancy due to dimension matching. Experimental verification of the proposed method on the emotion-recognition task using the IEMOCAP and CMU-MOSI datasets showed a significant reduction in storage space and recognition time. The results also validate that the proposed method improves the performance and reduces both the training time and the number of parameters. |
Audience | Academic |
Author | Ayub, Muhammad Saad Liu, Fen Li, Kemeng Cai, Chang Chen, Jianfeng Tan, Weijie |
AuthorAffiliation | 2 College of Mathematics and Computer Science, Yan’an University, Yan’an 716000, China 1 School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China 3 State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China |
AuthorAffiliation_xml | – name: 1 School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China – name: 3 State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China – name: 2 College of Mathematics and Computer Science, Yan’an University, Yan’an 716000, China |
Author_xml | – sequence: 1 givenname: Fen orcidid: 0000-0002-6099-3900 surname: Liu fullname: Liu, Fen organization: College of Mathematics and Computer Science, Yan'an University, Yan'an 716000, China – sequence: 2 givenname: Jianfeng orcidid: 0000-0002-7281-7138 surname: Chen fullname: Chen, Jianfeng organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China – sequence: 3 givenname: Kemeng surname: Li fullname: Li, Kemeng organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China – sequence: 4 givenname: Weijie orcidid: 0000-0001-6590-5757 surname: Tan fullname: Tan, Weijie organization: State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China – sequence: 5 givenname: Chang surname: Cai fullname: Cai, Chang organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China – sequence: 6 givenname: Muhammad Saad surname: Ayub fullname: Ayub, Muhammad Saad organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36554241$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk1v1DAQhiNURD_gwB9AkbjQQ4q_4sQXpG3VhUpdUcHeLa893vUqGxc7QSq_nkm3rFrkg8fjZ97xjOe0OOpjD0XxnpILzhX5DExQRlsuXxUnlChVCU7I0TP7uDjNeUsI44zKN8Uxl3UtMOikeJiVdyaZroOuXIzdEKpFdKYr58YOMYU_4MrL0IUeTCrvYkRrXc7HHGJfLmDYRLw2GSE8Dxsof8IuVEvoc0Q8RTfaofRoX-_iMMX8ABvXfZjst8Vrb7oM7572s2I5v15efatuv3-9uZrdVlbwdqhAeStrRUUjlFNghVoBq6VQnIJnWDaTEqRzTJGWIcJs68WKrSiXykrLz4qbvayLZqvvU9iZ9KCjCfrREdNamzQE24EmdMWkb4VroREN88ZRA954yWtcSqLWl73W_bjagbPQD9i6F6Ivb_qw0ev4W6umaVpBUeDTk0CKv0bIg96FbKHrTA9xzJo1dUspJ3LK9fE_dBvH1GOnJkrKVgo2URd7am2wgND7iHktLocfYXFKfED_rBF1Q1QrBAac7wNsijkn8IfXU6KnYdKHYUL2w_NyD-S_6eF_AcuoxSs |
CitedBy_id | crossref_primary_10_3390_e25101440 crossref_primary_10_1016_j_dsp_2023_104265 |
Cites_doi | 10.1007/s10579-008-9076-6 10.18653/v1/D17-1115 10.1145/3242969.3264989 10.1145/3340555.3355719 10.18653/v1/P18-1209 10.1109/TMM.2018.2794985 10.1007/s11042-009-0344-2 10.1007/BF02289464 10.1145/2663204.2663260 10.1142/8323 10.1609/aaai.v32i1.12021 10.3390/e23101349 10.1109/TMM.2012.2189550 10.1109/IGARSS.2018.8519360 10.1109/ICASSP.2014.6853739 10.24963/ijcai.2018/365 10.1155/2018/3125879 10.1007/BF02714570 10.18653/v1/D16-1044 10.1109/TAC.2010.2043294 10.18653/v1/2020.challengehml-1.4 10.1137/S0036144598340483 10.1155/2020/8269683 10.1142/S1793351X13400023 10.1109/ICCV.2017.202 10.1109/TMM.2008.921737 10.1109/TASLP.2021.3096037 10.1609/aaai.v32i1.12024 10.1109/IJCNN48605.2020.9206964 10.1109/ACCESS.2019.2916887 10.3115/v1/D14-1162 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | NPM AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.3390/e24121836 |
DatabaseName | PubMed CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database Civil Engineering Abstracts Engineering Database Technology Collection Technology Research Database Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic Engineering Collection MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1099-4300 |
ExternalDocumentID | oai_doaj_org_article_01b26f84d8e7472fad1aefaf63535396 A745709844 10_3390_e24121836 36554241 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Shaanxi Province grantid: 2020JM-554 – fundername: Yan’an University Scientific Research Project grantid: YDY2019-18 |
GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ ABDBF ABJCF ACIWK ADBBV AEGXH AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E NPM OK1 PGMZT PIMPY PROAC PTHSS RNS RPM TR2 TUS XSB ~8M AAYXX AFPKN CITATION 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c438t-e9fc65914749d9ec49be2564931ef2121266e6dd2908249d2c8f4b2b1369c6c3 |
IEDL.DBID | RPM |
ISSN | 1099-4300 |
IngestDate | Tue Oct 22 15:15:04 EDT 2024 Tue Sep 17 21:32:15 EDT 2024 Fri Oct 25 08:28:03 EDT 2024 Thu Oct 10 18:58:36 EDT 2024 Tue Nov 12 22:48:56 EST 2024 Wed Aug 14 12:35:20 EDT 2024 Wed Oct 16 00:41:48 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | multi-modal information fusion emotion recognition low-rank matrix semi-tensor product |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-e9fc65914749d9ec49be2564931ef2121266e6dd2908249d2c8f4b2b1369c6c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7281-7138 0000-0001-6590-5757 0000-0002-6099-3900 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777841/ |
PMID | 36554241 |
PQID | 2756686426 |
PQPubID | 2032401 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_01b26f84d8e7472fad1aefaf63535396 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9777841 proquest_miscellaneous_2758113066 proquest_journals_2756686426 gale_infotracacademiconefile_A745709844 crossref_primary_10_3390_e24121836 pubmed_primary_36554241 |
PublicationCentury | 2000 |
PublicationDate | 20221216 |
PublicationDateYYYYMMDD | 2022-12-16 |
PublicationDate_xml | – month: 12 year: 2022 text: 20221216 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Entropy (Basel, Switzerland) |
PublicationTitleAlternate | Entropy (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Xie (ref_12) 2013; 7 Busso (ref_38) 2008; 42 Liu (ref_36) 2006; 51 ref_14 ref_13 ref_33 ref_31 ref_30 Chen (ref_32) 2018; 20 Cheng (ref_34) 2010; 55 ref_19 Tucker (ref_35) 1966; 31 ref_39 ref_15 Wu (ref_7) 2020; 2020 Cheng (ref_29) 2001; 44 Ahuja (ref_1) 2018; 41 Mansoorizadeh (ref_17) 2010; 49 Bai (ref_10) 2022; 2022 Guo (ref_11) 2019; 7 Wang (ref_18) 2012; 14 ref_25 ref_24 ref_23 ref_22 ref_20 Habibian (ref_2) 2016; 39 ref_40 ref_3 Lee (ref_9) 2018; 2018 ref_28 ref_27 ref_26 ref_8 Hubert (ref_37) 2000; 42 ref_5 Zhou (ref_16) 2021; 29 ref_4 Zeng (ref_21) 2008; 10 ref_6 |
References_xml | – volume: 42 start-page: 335 year: 2008 ident: ref_38 article-title: IEMOCAP: Interactive Emotional Dyadic Motion Capture Database publication-title: Lang. Resour. Eval. doi: 10.1007/s10579-008-9076-6 contributor: fullname: Busso – ident: ref_5 doi: 10.18653/v1/D17-1115 – ident: ref_20 doi: 10.1145/3242969.3264989 – ident: ref_19 doi: 10.1145/3340555.3355719 – ident: ref_3 – ident: ref_24 – ident: ref_26 doi: 10.18653/v1/P18-1209 – volume: 20 start-page: 1973 year: 2018 ident: ref_32 article-title: A novel digital watermarking based on general non-negative matrix factorization publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2018.2794985 contributor: fullname: Chen – volume: 49 start-page: 277 year: 2010 ident: ref_17 article-title: Multimodal information fusion application to human emotion recognition from face and speech publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-009-0344-2 contributor: fullname: Mansoorizadeh – volume: 31 start-page: 279 year: 1966 ident: ref_35 article-title: Some mathematical notes on three-mode factor analysis publication-title: Psychometrika doi: 10.1007/BF02289464 contributor: fullname: Tucker – volume: 39 start-page: 2013 year: 2016 ident: ref_2 article-title: VideoStory Embeddings Recognize Events when Examples are Scarce publication-title: IEEE Trans. Pattern Anal. Mach. Intell. contributor: fullname: Habibian – ident: ref_4 doi: 10.1145/2663204.2663260 – ident: ref_33 doi: 10.1142/8323 – ident: ref_28 doi: 10.1609/aaai.v32i1.12021 – ident: ref_6 doi: 10.3390/e23101349 – volume: 14 start-page: 597 year: 2012 ident: ref_18 article-title: Kernel cross-modal factor analysis for information fusion with application to bimodal emotion recognition publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2012.2189550 contributor: fullname: Wang – volume: 41 start-page: 423 year: 2018 ident: ref_1 article-title: Multimodal machine learning: A survey and taxonomy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. contributor: fullname: Ahuja – ident: ref_30 doi: 10.1109/IGARSS.2018.8519360 – ident: ref_40 doi: 10.1109/ICASSP.2014.6853739 – ident: ref_8 doi: 10.24963/ijcai.2018/365 – ident: ref_14 – volume: 2018 start-page: 3125879 year: 2018 ident: ref_9 article-title: Multimodal feature learning for video captioning publication-title: Math. Probl. Eng. doi: 10.1155/2018/3125879 contributor: fullname: Lee – volume: 44 start-page: 195 year: 2001 ident: ref_29 article-title: Semi-tensor product of matrices and its application to Morgen’s problem publication-title: Sci. China Ser. Inf. Sci. doi: 10.1007/BF02714570 contributor: fullname: Cheng – ident: ref_23 doi: 10.18653/v1/D16-1044 – volume: 55 start-page: 2251 year: 2010 ident: ref_34 article-title: A linear representation of dynamics of Boolean networks publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2010.2043294 contributor: fullname: Cheng – volume: 2022 start-page: 1 year: 2022 ident: ref_10 article-title: Multimodal Urban Sound Tagging with Spatiotemporal Context publication-title: IEEE Trans. Cogn. Dev. Syst. contributor: fullname: Bai – ident: ref_15 doi: 10.18653/v1/2020.challengehml-1.4 – volume: 42 start-page: 68 year: 2000 ident: ref_37 article-title: Two purposes for matrix factorization: A historical appraisal publication-title: SIAM Rev. doi: 10.1137/S0036144598340483 contributor: fullname: Hubert – volume: 2020 start-page: 8269683 year: 2020 ident: ref_7 article-title: The recognition of teacher behavior based on multimodal information fusion publication-title: Math. Probl. Eng. doi: 10.1155/2020/8269683 contributor: fullname: Wu – volume: 7 start-page: 25 year: 2013 ident: ref_12 article-title: Multimodal Information Fusion of Audio Emotion Recognition Based on Kernel Entropy Component Analysis publication-title: Int. J. Semant. Comput. doi: 10.1142/S1793351X13400023 contributor: fullname: Xie – ident: ref_27 doi: 10.1109/ICCV.2017.202 – volume: 10 start-page: 570 year: 2008 ident: ref_21 article-title: Audio–visual affective expression recognition through multistream fused HMM publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2008.921737 contributor: fullname: Zeng – ident: ref_13 – volume: 51 start-page: 241 year: 2006 ident: ref_36 article-title: Non-negative matrix factorization and its application in pattern recognition publication-title: Chin. Sci. Bull. contributor: fullname: Liu – volume: 29 start-page: 2617 year: 2021 ident: ref_16 article-title: Information fusion in attention networks using adaptive and multi-level factorized bilinear pooling for audio-visual emotion recognition publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2021.3096037 contributor: fullname: Zhou – ident: ref_22 – ident: ref_25 doi: 10.1609/aaai.v32i1.12024 – ident: ref_31 doi: 10.1109/IJCNN48605.2020.9206964 – volume: 7 start-page: 63373 year: 2019 ident: ref_11 article-title: Deep Multimodal Representation Learning: A Survey publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2916887 contributor: fullname: Guo – ident: ref_39 doi: 10.3115/v1/D14-1162 |
SSID | ssj0023216 |
Score | 2.349786 |
Snippet | Multi-modal fusion can exploit complementary information from various modalities and improve the accuracy of prediction or classification tasks. In this paper,... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1836 |
SubjectTerms | Costs Data integration Emotion recognition Emotions low-rank matrix Matching Mathematical analysis multi-modal information fusion Redundancy semi-tensor product Tensors |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ba9swFBajp13GRrvWW1u0MejJNLJl2TompaEMMsqWQm9CtqQtsNkjSw7br-_3LCfE7LDLsC-2HkbWk_x9T5a-x9gHraWf1EWG2CSEVNpGp2DVRepCbqtgQyEcTegvPqm7B_nxsXg8SPVFa8KiPHBsuOuJqDMVKukqD-abBeuE9XgIgBKHjmLbE70LpoZQK8-EijpCOYL6aw-cIi6gRujTi_T__Sk-wKLxOskD4Jm_ZC8Gxsinsaav2DPfHrPfU35v15QH5Tvv99Cmi87Bat6nz1n98Y7PVsQg7Zrfd5SY5yufb2lmjC_6nNF8BvhyHNdggPyL_7FKl4hoO5hHDVgONstvY5If_nm3zKhrT9hyfru8uUuHLAppI_Nqk3odGlVoIUupnfaN1LUHz5E6Fz4AuAQg2ivnMkp-DpOsqYKss1rkSjeqyV-zo7Zr_RnjoI4gg6UIQVgSYtcK9Bz0q3Qu2MLWCXu_a1zzM2plGMQY5AGz90DCZtTsewOSt-5vwOlmcLr5l9MTdkVOMzQI4ZnGDnsJUE-SszLTUhblRFdSJux851czjM5fhiTvVYXICw96ty_GuKKfJbb13ba3qQQAXsHmNHaDfZ1zBRKGF0pYOeogo5cal7Srb712N-g2_el98z9a4S17ntFmDIFTnbOjzXrrL0CRNvVlPxqeADVfD8U priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLggKl6BtjIIiZPVdeI49gntVg0V0qIKFqk3y_GjrARJ2e4e4Ncz42RDIyS0e9lktHIyY883fnwfIW-1FmHWlDnUJjEyYZ1mgKpL5mNhVbSx5B4n9Jef5MVX8fGqvBom3G6HbZX7MTEN1L5zOEd-ijTlUgFalu9vfjJUjcLV1UFC4z55wPOqwuJL1R_GgqvIuezZhAoo7U8DZCtEBHKSgxJV_78D8p2MNN0teSf91I_JowE30nnv6ENyL7RPyK85vbQbVEP5TtNJWrbsPFjVSURn_Tt4ulgjjrQbetmhPM81rXc4P0aXSTmaLiCJeQq_AQfSL-HHmq2gru3AvGeCpYBp6Xkv9UM_7zcbde1TsqrPV2cXbNBSYE4UasuCjk6WmotKaK-DE7oJgHaELniIkL44JOogvc9RAh1McqeiaPKGF1I76Ypn5KDt2vCCUACQAAkrHiO3SMeuJYB0AGGV99GWtsnIm_3LNTc9Y4aBSgM9YEYPZGSBr300QJLrdKHbXJuhz5gZb3IZlfAqQNGTR-u5DRA_gJHgo-FP3qHTDHZF8Iyzw4kCaCeSWpl5JcpqppUQGTna-9UMffTW_I2ojLweb0PvwiUT24Zul2wUhzQvweZ5HwZjmwsJUAweKCPVJEAmDzW9066_JQZvAN243vvy_816RR7meNiCw1cekYPtZheOAQJtm5MU538AR_QHNA priority: 102 providerName: ProQuest |
Title | A Parallel Multi-Modal Factorized Bilinear Pooling Fusion Method Based on the Semi-Tensor Product for Emotion Recognition |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36554241 https://www.proquest.com/docview/2756686426 https://search.proquest.com/docview/2758113066 https://pubmed.ncbi.nlm.nih.gov/PMC9777841 https://doaj.org/article/01b26f84d8e7472fad1aefaf63535396 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb5swFLaa7rLLtGm_0nWRN03aiSYGY_AxqUKrSamiLpNyQwbbHVIDVZYc1r--nw1EjXabQEjAAxneM-975vl7hHyTkptJEYeITawNuCplAFQdB9pGKrXKxky7Af3Fjbj-xX-s4_UJifu5MD5pvyyqi_p-c1FXv31u5cOmHPd5YuPl4hKYxf0uGw_IAAbah-hdlBWFTLQUQhHi-bGBi3IwQBw5Hs_P_-9X-JkbOk6RfOZzstfkVQcW6bRt1BtyYuq35O-ULtXWlUC5p376bLBoNKQyXzmnejSazioHHtWWLhtXk-eOZns3KEYXvlw0ncFzaYp9gD_602yqYIVgtoF4S_9KAWTpvK3vQ2_7DKOmfkdW2Xx1eR10BRSCkkfpLjDSliKWjCdcamlKLgsDiMNlxIyFz2LwzkZoHbq65xAJy9TyIixYJGQpyug9Oa2b2nwkFKgRODBh1jLlONilADIH8kq0tipWxZB87V9u_tDSZOQIL5wG8oMGhmTmXvtBwDFb-wPN9i7v9JtPWBEKm3KdGkQ6oVWaKQOjATDCInGT705puet_0EypumkEaKdjssqnCY-TiUw5H5LzXq951zH_5I7tXqQIunCjL4fT6FLuP4mqTbP3MimDbxeQ-dCawaHNkQD-wgMNSXJkIEcPdXwGVuxpuzurPfvvKz-Rl6GbfMGwinNyutvuzWdAol0xIoM0uxqRF7P5zfJ25AcWsL1as5HvHE_6zxLa |
link.rule.ids | 230,315,730,783,787,867,888,2109,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,53804,53806,74363,74630 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nj9MwELVg9wAXBOIrsIBBSJyirRPHiU-oRa0KbKtqKdLeIie2l0qQLN32AL-eN0kaNkJCySXJKLI9Y88bf7xh7K3W0o2KJEJs4n0oTalDoOoktD42mTc-EZYm9BdLNf8qP10kF92E23W3rfIwJjYDta1LmiM_JZpylQEtq_dXP0PKGkWrq10KjdvsmKiqEHwdT6bL1XkfcsWRUC2fUIzg_tTBXxEmUAMv1JD1_zsk3_BJw_2SNxzQ7D671yFHPm5V_YDdctVD9mvMV2ZL-VC-8-YsbbioLaRmTRqdzW9n-WRDSNJs-aqmBD2XfLanGTK-aHJH8wncmOV4BhLkX9yPTbhGZFtDvOWC5UC1fNom--Hnh-1GdfWIrWfT9Yd52GVTCEu0zS502pcq0UKmUlvtSqkLB7wjdSychwMTcNVOWRtREnSIRGXmZREVIla6VGX8mB1VdeWeMg4ICVCYCu-FIUJ2rQDTAcNSa71JTBGwN4fGza9azowcsQZpIO81ELAJNXsvQDTXzYt6e5l3vSYfiSJSPpM2cwh7Im-sMA4WBJSES-Mn70hpOXVGaKY03ZkClJNorfJxKpN0pDMpA3Zy0Gve9dLr_K9NBex1_xn9ixZNTOXqfSOTCTh6BZknrRn0ZY4VwBgqFLB0YCCDSg2_VJtvDYc3YDet-D77f7FesTvz9eIsP_u4_Pyc3Y3o6IXArU7Y0W67dy8AiHbFy87q_wAzXQuF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELagKyEuaBGvsAsYhMQpah07TnxCLTRaHq2qpUh7s5zYXipBsnTbA_x6ZhI3bISEkkuSUeRkxp5v7PF8hLxWSrhJmSYQm3gfC1OpGFB1GlvPTe6NT5nFCf3FUp59FR8v0ouQ_3Qd0ioPY2I7UNumwjnyMZYplzmgZTn2IS1i9b54e_UzRgYpXGkNdBq3yVEmJJ-MyNFsvlyd9-EXT5jsagtxCPTHDnwX4gM58Eht4f5_h-cb_mmYO3nDGRXH5F5AkXTaqf0-ueXqB-TXlK7MFrlRvtN2X228aCxIFS2lzua3s3S2QVRptnTVIFnPJS32OFtGFy2PNJ2BS7MUrgEV0i_uxyZeQ5TbgHhXF5YCwqXzjviHnh9Sj5r6IVkX8_W7szgwK8SV4PkudspXMlVMZEJZ5SqhSgfYRyjOnAdnxsBtO2ltgoToIJJUuRdlUjIuVSUr_oiM6qZ2TwgFOAkAMWPeM4PF2ZUEyA6QLLPWm9SUEXl1-Ln6qqufoSHuQA3oXgMRmeFv7wWw5HV7o9le6tCD9ISVifS5sLmDECjxxjLjwJoAMcGh4CVvUGkaOyZopjJhfwG0E0tc6Wkm0myiciEicnrQqw499lr_ta-IvOwfQ1_DBRRTu2bfyuQMnL4EmcedGfRt5hKAGXxQRLKBgQw-avik3nxr63kDBMfV36f_b9YLcgcMXn_-sPx0Qu4muAuDwSlPyWi33btngI125fNg9H8AmqYPsw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Parallel+Multi-Modal+Factorized+Bilinear+Pooling+Fusion+Method+Based+on+the+Semi-Tensor+Product+for+Emotion+Recognition&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Fen+Liu&rft.au=Jianfeng+Chen&rft.au=Kemeng+Li&rft.au=Weijie+Tan&rft.date=2022-12-16&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=24&rft.issue=12&rft.spage=1836&rft_id=info:doi/10.3390%2Fe24121836&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_01b26f84d8e7472fad1aefaf63535396 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |