A Parallel Multi-Modal Factorized Bilinear Pooling Fusion Method Based on the Semi-Tensor Product for Emotion Recognition
Multi-modal fusion can exploit complementary information from various modalities and improve the accuracy of prediction or classification tasks. In this paper, we propose a parallel, multi-modal, factorized, bilinear pooling method based on a semi-tensor product (STP) for information fusion in emoti...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 24; no. 12; p. 1836 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
16.12.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Multi-modal fusion can exploit complementary information from various modalities and improve the accuracy of prediction or classification tasks. In this paper, we propose a parallel, multi-modal, factorized, bilinear pooling method based on a semi-tensor product (STP) for information fusion in emotion recognition. Initially, we apply the STP to factorize a high-dimensional weight matrix into two low-rank factor matrices without dimension matching constraints. Next, we project the multi-modal features to the low-dimensional matrices and perform multiplication based on the STP to capture the rich interactions between the features. Finally, we utilize an STP-pooling method to reduce the dimensionality to get the final features. This method can achieve the information fusion between modalities of different scales and dimensions and avoids data redundancy due to dimension matching. Experimental verification of the proposed method on the emotion-recognition task using the IEMOCAP and CMU-MOSI datasets showed a significant reduction in storage space and recognition time. The results also validate that the proposed method improves the performance and reduces both the training time and the number of parameters. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1099-4300 1099-4300 |
DOI: | 10.3390/e24121836 |