Heat transfer model for evaporation in microchannels. Part I: presentation of the model

A three-zone flow boiling model is proposed to describe evaporation of elongated bubbles in microchannels. The heat transfer model describes the transient variation in local heat transfer coefficient during the sequential and cyclic passage of (i) a liquid slug, (ii) an evaporating elongated bubble...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 47; no. 14; pp. 3375 - 3385
Main Authors Thome, J.R., Dupont, V., Jacobi, A.M.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.07.2004
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A three-zone flow boiling model is proposed to describe evaporation of elongated bubbles in microchannels. The heat transfer model describes the transient variation in local heat transfer coefficient during the sequential and cyclic passage of (i) a liquid slug, (ii) an evaporating elongated bubble and (iii) a vapor slug. A time-averaged local heat transfer coefficient is thus obtained. The new model illustrates the importance of the strong cyclic variation in the heat transfer coefficient and the strong dependency of heat transfer on the bubble frequency, the minimum liquid film thickness at dryout and the liquid film formation thickness.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0017-9310
1879-2189
DOI:10.1016/j.ijheatmasstransfer.2004.01.006