Multiscale mechanical model based on patient-specific geometry: Application to early keratoconus development
Keratoconus is a pathology of the cornea associated with a tissue thinning and a weakening of its mechanical properties. However, it remains elusive which aspect is the leading cause of the disease. To investigate this question, we combined a multiscale model with a patient-geometry in order to simu...
Saved in:
Published in | Journal of the mechanical behavior of biomedical materials Vol. 129; p. 105121 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.05.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Keratoconus is a pathology of the cornea associated with a tissue thinning and a weakening of its mechanical properties. However, it remains elusive which aspect is the leading cause of the disease. To investigate this question, we combined a multiscale model with a patient-geometry in order to simulate the mechanical response of healthy and pathological corneas under intraocular pressure. The constitutive behavior of the cornea is described through an energy function which takes into account the isotropic matrix of the cornea, the geometric structure of collagen lamellae and the quasi-incompressibility of the tissue. A micro-sphere description is implemented to take into account the typical features of the collagen lamellae as obtained experimentally, namely their orientation, their stiffness and their dispersion, as well as the their unfolding stretch, at which they start to provide a significant force. A set of reference parameters is obtained to fit experimental inflation data of the literature. We show that the most sensitive parameter is the unfolding stretch, as a small variation of this parameter induces a major change in the corneal apex displacement. The keratoconus case is then studied by separating the impact of the geometry and the one of the mechanics. We computed the evolution of the SimK (a clinical indicator of cornea curvature) and elevation maps: we were able to reproduce the reported changes of SimK with pressure only by a mechanical weakening, and not by a change in geometry. More specifically, the weakening has to target the lamellae and not the matrix. The mechanical weakening leads to elevations close to early stage keratoconus, but our model lacks the remodeling component to couple the change in mechanics with changes in geometry. Still, these findings indicate that new methods for early diagnosis of keratoconus should focus on the detection of a mechanical weakening, and that stiffening treatments should be appropriate. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1751-6161 1878-0180 |
DOI: | 10.1016/j.jmbbm.2022.105121 |