Effect of multi-stage heat treatment on mechanical properties and microstructure transformation of Ti–48Al–2Cr–2Nb alloy

Refining the grain size of γ-TiAl alloys to improve their strength and ductility is of academic interest. Thus, we report a multi-stage heat treatment method consisting of solution treatment, cyclic heat treatment, annealing, short heat treatment, and aging to refine the microstructure of the Ti–48A...

Full description

Saved in:
Bibliographic Details
Published inMaterials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 816; p. 141321
Main Authors Yim, Seungkyun, Bian, Huakang, Aoyagi, Kenta, Chiba, Akihiko
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.06.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Refining the grain size of γ-TiAl alloys to improve their strength and ductility is of academic interest. Thus, we report a multi-stage heat treatment method consisting of solution treatment, cyclic heat treatment, annealing, short heat treatment, and aging to refine the microstructure of the Ti–48Al–2Cr–2Nb alloy. The solution-treated microstructure was refined from 1100 to 191 μm by cyclic heat treatment, promoting feathery γ packets. Fine duplex grains below 23 μm were obtained through discontinuous coarsening, which was accelerated in the cyclic-heat-treated alloys owing to the high driving force resulting from the presence of feathery γ packets and fine interlamellar spacing. Through the short heat treatment and aging at single α and α2 + γ fields, a tailored duplex structure with a grain size of 24 μm and interlamellar spacing of 42 nm was achieved. Through microstructure refinement, tensile strength and elongation were improved to 697 MPa and 2.1%, respectively, compared to those of the conventional forged specimen (622 MPa and 1.3%, respectively). We believe that our study provides a simple pathway to refine the grain size and interlamellar spacing of γ-TiAl alloys.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2021.141321