Urban pollution of sediments: Impact on the physiology and burrowing activity of tubificid worms and consequences on biogeochemical processes

In urban areas, infiltration basins are designed to manage stormwater runoff from impervious surfaces and allow the settling of associated pollutants. The sedimentary layer deposited at the surface of these structures is highly organic and multicontaminated (mainly heavy metals and hydrocarbons). On...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 568; no. 196–207; pp. 196 - 207
Main Authors Pigneret, M., Mermillod-Blondin, F., Volatier, L., Romestaing, C., Maire, E., Adrien, J., Guillard, L., Roussel, D., Hervant, F.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.10.2016
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In urban areas, infiltration basins are designed to manage stormwater runoff from impervious surfaces and allow the settling of associated pollutants. The sedimentary layer deposited at the surface of these structures is highly organic and multicontaminated (mainly heavy metals and hydrocarbons). Only few aquatic species are able to maintain permanent populations in such an extreme environment, including the oligochaete Limnodrilus hoffmeisteri. Nevertheless, the impact of urban pollutants on these organisms and the resulting influence on infiltration basin functioning remain poorly studied. Thus, the aim of this study was to determine how polluted sediments could impact the survival, the physiology and the bioturbation activity of L. hoffmeisteri and thereby modify biogeochemical processes occurring at the water-sediment interface. To this end, we conducted laboratory incubations of worms, in polluted sediments from infiltration basins or slightly polluted sediments from a stream. Analyses were performed to evaluate physiological state and burrowing activity (X-ray micro-tomography) of worms and their influences on biogeochemical processes (nutrient fluxes, CO2 and CH4 degassing rates) during 30-day long experiments. Our results showed that worms exhibited physiological responses to cope with high pollution levels, including a strong ability to withstand the oxidative stress linked to contamination with heavy metals. We also showed that the presence of urban pollutants significantly increased the burrowing activity of L. hoffmeisteri, demonstrating the sensitivity and the relevance of such a behavioural response as biomarker of sediment toxicity. In addition, we showed that X-ray micro-tomography was an adequate technique for accurate and non-invasive three-dimensional investigations of biogenic structures formed by bioturbators. The presence of worms induced stimulations of nutrient fluxes and organic matter recycling (between +100% and 200% of CO2 degassing rate). Nevertheless, these stimulations were comparable within the three sediments, suggesting a low influence of urban contaminants on bioturbation-driven biogeochemical processes under our experimental conditions. [Display omitted] •We studied the impact of a cocktail of urban pollutants on L. hoffmeisteri.•Tubificid worms were able to withstand the oxidative stress linked to heavy-metals.•X-ray micro-tomography quantified the burrowing activity of worms in sediments.•L. hoffmeisteri displayed an increased burrowing activity in the stormwater sediments.•Worms stimulated biogeochemical processes whatever the pollution level.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2016.05.174