Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators

Luminescent solar concentrators (LSCs) provide a simple means to concentrate sunlight without tracking the Sun. These devices absorb and then re-emit light at a lower frequency into the confined modes of a transparent slab, where it is guided towards photovoltaic cells attached to the slab edges. In...

Full description

Saved in:
Bibliographic Details
Published inNature photonics Vol. 5; no. 11; pp. 694 - 701
Main Authors Giebink, Noel C., Wiederrecht, Gary P., Wasielewski, Michael R.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.11.2011
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Luminescent solar concentrators (LSCs) provide a simple means to concentrate sunlight without tracking the Sun. These devices absorb and then re-emit light at a lower frequency into the confined modes of a transparent slab, where it is guided towards photovoltaic cells attached to the slab edges. In the thermodynamic limit, a concentration ratio exceeding the equivalent of 100 suns is possible, but, in actual LSCs, optical propagation loss (due mostly to reabsorption) limits the concentration ratio to ∼10. Here, we introduce a general, all-optical means to overcome this problem by ‘resonance-shifting’, in which sharply directed emission from a bilayer cavity into the glass substrate returns to interact with the cavity off-resonance at each subsequent bounce, significantly reducing reabsorption loss en route to the edges. Using this strategy, we demonstrate near-lossless propagation for several different chromophores, which ultimately enables a more than twofold increase in concentration ratio over that of the corresponding conventional LSC. Re-absorption losses in luminescent solar concentrators cause concentration performances to be around ten times less than the ideal value. Researchers have now reduced re-absorption by forcing the emission in one region to be off-resonant with the other regions, achieving a two-fold enhancement in concentration performance over conventional devices.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1749-4885
1749-4893
DOI:10.1038/nphoton.2011.236