Laser frequency sweep linearization by iterative learning pre-distortion for FMCW LiDAR
We report on a laser frequency sweep linearization method by iterative learning pre-distortion for frequency-modulated continuous-wave (FMCW) light detection and ranging (LiDAR) systems. A pre-distorted laser drive voltage waveform that results in a linear frequency sweep is obtained by an iterative...
Saved in:
Published in | Optics express Vol. 27; no. 7; pp. 9965 - 9974 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
01.04.2019
|
Online Access | Get full text |
Cover
Loading…
Summary: | We report on a laser frequency sweep linearization method by iterative learning pre-distortion for frequency-modulated continuous-wave (FMCW) light detection and ranging (LiDAR) systems. A pre-distorted laser drive voltage waveform that results in a linear frequency sweep is obtained by an iterative learning controller, and then applied to the FMCW LiDAR system. We have also derived a fundamental figure of merit for the maximum residual nonlinearity needed to achieve the transform-limited range resolution. This method is experimentally tested using a commercial vertical cavity surface-emitting laser (VCSEL) and a distributed feedback (DFB) laser, achieving less than 0.005% relative residual nonlinearity of frequency sweep. With the proposed method, high-performance FMCW LiDAR systems can be realized without expensive linear lasers, complex linearization setups, or heavy post-processing. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/oe.27.009965 |