Adenosine Encapsulation and Characterization through Layer-by-Layer Assembly of Hydroxypropyl- β -Cyclodextrin and Whey Protein Isolate as Wall Materials

Adenosine, as a water-soluble active substance, has various pharmacological effects. This study proposes a layer-by-layer assembly method of composite wall materials, using hydroxypropyl-β-cyclodextrin as the inner wall and whey protein isolate as the outer wall, to encapsulate adenosine within the...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 29; no. 9; p. 2046
Main Authors Jin, Yudie, Zhang, Suning
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 29.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Adenosine, as a water-soluble active substance, has various pharmacological effects. This study proposes a layer-by-layer assembly method of composite wall materials, using hydroxypropyl-β-cyclodextrin as the inner wall and whey protein isolate as the outer wall, to encapsulate adenosine within the core material, aiming to enhance adenosine microcapsules' stability through intermolecular interactions. By combining isothermal titration calorimetry with molecular modeling analysis, it was determined that the core material and the inner wall and the inner wall and the outer wall interact through intermolecular forces. Adenosine and hydroxypropyl-β-cyclodextrin form an optimal 1:1 complex through hydrophobic interactions, while hydroxypropyl-β-cyclodextrin and whey protein isolate interact through hydrogen bonds. The embedding rate of AD/Hp-β-CD/WPI microcapsules was 36.80%, and the 24 h retention rate under the release behavior test was 76.09%. The method of preparing adenosine microcapsules using composite wall materials is environmentally friendly and shows broad application prospects in storage and delivery systems with sustained release properties.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules29092046