Epigenetic silencing of the PTEN gene in melanoma

Phosphatase and tensin homologue deleted from chromosome 10 (PTEN) seems to be an important tumor suppressor gene in melanoma. Because the PTEN gene is only infrequently deleted or mutated, and because the PTEN protein is low to absent in a significant number of melanomas, we investigated alternativ...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 66; no. 13; pp. 6546 - 6552
Main Authors Mirmohammadsadegh, Alireza, Marini, Alessandra, Nambiar, Sandeep, Hassan, Mohamed, Tannapfel, Andrea, Ruzicka, Thomas, Hengge, Ulrich R
Format Journal Article
LanguageEnglish
Published United States 01.07.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Phosphatase and tensin homologue deleted from chromosome 10 (PTEN) seems to be an important tumor suppressor gene in melanoma. Because the PTEN gene is only infrequently deleted or mutated, and because the PTEN protein is low to absent in a significant number of melanomas, we investigated alternative methods of epigenetic silencing. We did quantitative positional methylation analysis (pyrosequencing) on 37 sera from melanoma patients and on 21 pairs of corresponding sera and melanoma specimens in addition to Taqman reverse transcription-PCR. We report significant positional PTEN promoter methylation in 62% of circulating DNA isolated from sera of patients with metastatic melanoma. The percentage of methylation of a selected CpG island in blood showed a correlation with methylation levels in the corresponding melanoma tissue. Moreover, high percentages of PTEN methylation were associated with low PTEN transcription levels. Using the demethylation agent 5-aza-2'-deoxycytidine, reduced methylation and a corresponding increase in PTEN protein were observed in BLM melanoma cells, leading to reduced AKT activity in an in vitro kinase assay. In summary, epigenetic PTEN silencing seems to be a relevant mechanism of inactivating this tumor suppressor gene in melanoma that may promote melanoma development by derepression of the AKT pathway.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-06-0384