Automated Time-Resolved Immunofluorometric Assay for Progastrin-Releasing Peptide

Small cell lung cancer accounts for approximately 20% of new cases of lung cancer, and advanced disease is prevalent at the time of diagnosis. Neuron-specific enolase (NSE) has been the primary tumor marker in small cell lung cancer but it has relatively low sensitivity in early-stage disease. Proga...

Full description

Saved in:
Bibliographic Details
Published inClinical chemistry (Baltimore, Md.) Vol. 54; no. 5; pp. 919 - 922
Main Authors Nordlund, Marianne S, Warren, David J, Nustad, Kjell, Bjerner, Johan, Paus, Elisabeth
Format Journal Article
LanguageEnglish
Published Washington, DC Am Assoc Clin Chem 01.05.2008
American Association for Clinical Chemistry
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Small cell lung cancer accounts for approximately 20% of new cases of lung cancer, and advanced disease is prevalent at the time of diagnosis. Neuron-specific enolase (NSE) has been the primary tumor marker in small cell lung cancer but it has relatively low sensitivity in early-stage disease. Progastrin-releasing peptide (proGRP) is a promising alternative or complementary marker for NSE. We have previously described a time-resolved immunofluorometric assay (TR-IFMA) for proGRP that lacked the necessary sensitivity and robustness for use in the routine clinical laboratory. Herein we describe the development of an improved assay using a novel monoclonal antibody pair. Mice were immunized with different conjugated proGRP peptides, including residues 31-98, 1-98, and preproGRP(-23-125). Pair combinations of the resulting monoclonal antibodies (mAb) were tested. The improved TR-IFMA was compared with the only other available proGRP assay, the proGRP ELISA (IBL). A panel of 12 high-affinity mAbs was produced. The best assay combination was between our original E146 mAb as solid-phase antibody and the new mAb M16 as tracer. The new TR-IFMA had a linear dose-response curve, a wide dynamic range (13-13 500 ng/L), and a limit of detection of 2.8 ng/L. Total CV was <5.6% over the whole measuring range. Bland-Altman difference analysis indicated a significant positive bias between the IFMA and the ELISA. We describe a sensitive and robust mAb-based TR-IFMA for proGRP. The assay is fully automated and displays high quality performance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0009-9147
1530-8561
DOI:10.1373/clinchem.2007.101436