Forced convection heat and mass transfer flow of a nanofluid through a porous channel with a first order chemical reaction on the wall

This study is devoted to investigate the fully developed forced convection heat and mass transfer in a horizontal porous channel filled with a nanofluid. It is assumed that the walls of the channel are subject to a constant heat flux. It is also assumed that the first order catalytic reaction takes...

Full description

Saved in:
Bibliographic Details
Published inInternational communications in heat and mass transfer Vol. 46; pp. 134 - 141
Main Authors Matin, Meisam Habibi, Pop, Ioan
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.08.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study is devoted to investigate the fully developed forced convection heat and mass transfer in a horizontal porous channel filled with a nanofluid. It is assumed that the walls of the channel are subject to a constant heat flux. It is also assumed that the first order catalytic reaction takes place on the walls and that the viscous dissipation term in the energy equation is taken into account. Brinkman model is used for the flow in the porous media and “clear fluid compatible” viscous dissipation model is considered. Thermal effect is taken also into account in the concentration equation. Closed form analytical solutions are presented for the governing dimensionless momentum, energy and concentration equations. The effects of nanoparticle volume fraction, Darcy, Brinkman, Damkohler and Soret numbers are investigated on the Nusselt number, velocity, temperature and concentration distributions.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0735-1933
1879-0178
DOI:10.1016/j.icheatmasstransfer.2013.05.001