Generation of infant- and pediatric-derived urinary induced pluripotent stem cells competent to form kidney organoids

Human induced pluripotent stem cells (iPSCs) are a promising tool to investigate pathogenic mechanisms underlying human genetic conditions, such as congenital anomalies of the kidney and urinary tract (CAKUT). Currently, iPSC-based research in pediatrics is limited by the invasiveness of cell collec...

Full description

Saved in:
Bibliographic Details
Published inPediatric research Vol. 87; no. 4; pp. 647 - 655
Main Authors Mulder, Jaap, Sharmin, Sazia, Chow, Theresa, Rodrigues, Deivid Carvalho, Hildebrandt, Matthew R, D'Cruz, Robert, Rogers, Ian, Ellis, James, Rosenblum, Norman D
Format Journal Article
LanguageEnglish
Published United States Nature Publishing Group 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Human induced pluripotent stem cells (iPSCs) are a promising tool to investigate pathogenic mechanisms underlying human genetic conditions, such as congenital anomalies of the kidney and urinary tract (CAKUT). Currently, iPSC-based research in pediatrics is limited by the invasiveness of cell collection. Urine cells (UCs) were isolated from pediatric urine specimens, including bag collections, and reprogrammed using episomal vectors into urinary iPSCs (UiPSCs). Following iPSC-quality assessment, human kidney organoids were generated. UCs were isolated from 71% (12/17) of single, remnant urine samples obtained in an outpatient setting (patients 1 month-17 years, volumes 10-75 ml). Three independent UCs were reprogrammed to UiPSCs with early episome loss, confirmed pluripotency and normal karyotyping. Subsequently, these UiPSCs were successfully differentiated into kidney organoids, closely resembling organoids generated from control fibroblast-derived iPSCs. Importantly, under research conditions with immediate sample processing, UC isolation was successful 100% for target pediatric CAKUT patients and controls (11/11) after at most two urine collections. Urine in small volumes or collected in bags is a reliable source for reprogrammable somatic cells that can be utilized to generate kidney organoids. This constitutes an attractive approach for patient-specific iPSC research involving infants and children with wide applicability and a low threshold for participation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-3998
1530-0447
DOI:10.1038/s41390-019-0618-y