Noise suppression by controlling the sparsity of the point spread function in interferenceless coded aperture correlation holography (I-COACH)
Interferenceless coded aperture correlation holography (I-COACH) is an incoherent opto-digital technique for imaging 3D objects. In I-COACH, the light scattered from an object is modulated by a coded phase mask (CPM) and then recorded by a digital camera as an object digital hologram. To reconstruct...
Saved in:
Published in | Optics express Vol. 27; no. 17; pp. 24311 - 24323 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
19.08.2019
|
Online Access | Get full text |
Cover
Loading…
Summary: | Interferenceless coded aperture correlation holography (I-COACH) is an incoherent opto-digital technique for imaging 3D objects. In I-COACH, the light scattered from an object is modulated by a coded phase mask (CPM) and then recorded by a digital camera as an object digital hologram. To reconstruct the image, the object hologram is cross-correlated with the point spread function (PSF)-the intensity response to a point at the same object's axial location recorded with the same CPM. So far in I-COACH systems, the light from each object point has scattered over the whole camera area. Hence, the signal-to-noise ratio per camera pixel is lower in comparison to the direct imaging in which each point is imaged to a single image point. In this work, we consider the midway between the camera responses of a single point and of a continuous pattern over the entire camera area. The light in this study is focused onto a set of dots randomly distributed over the camera plane. With this technique, we show that there is a PSF with a best number of dots, yielding an image with a maximum product of the signal-to-noise ratio and the image visibility and a maximum value of structural similarity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/oe.27.024311 |