Cinnamon polyphenols regulate S100β, sirtuins, and neuroactive proteins in rat C6 glioma cells

Abstract Objective Increasing evidence suggests that cinnamon has many health benefits when used in herbal medicine and as a dietary ingredient. The aim of this study was to investigate the effects of an aqueous extract of cinnamon, high in type A polyphenols, on molecular targets in rat C6 glioma c...

Full description

Saved in:
Bibliographic Details
Published inNutrition (Burbank, Los Angeles County, Calif.) Vol. 30; no. 2; pp. 210 - 217
Main Authors Qin, Bolin, Ph.D., M.D, Panickar, Kiran S., Ph.D, Anderson, Richard A., Ph.D
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 01.02.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Objective Increasing evidence suggests that cinnamon has many health benefits when used in herbal medicine and as a dietary ingredient. The aim of this study was to investigate the effects of an aqueous extract of cinnamon, high in type A polyphenols, on molecular targets in rat C6 glioma cells that underlie their protective effects. Methods C6 rat glioma cells were seeded in 35-mm culture dishes or six-well plates, then were incubated with cinnamon polyphenols at doses of 10 and 20 μg/mL for 24 h. The targeting protein expression, secretion, and phosphorylation were evaluated by immunoprecitation/immunoblotting and immunofluorescence imaging. Results Cinnamon polyphenols significantly enhanced secretion of S100β, a Ca2+ -binding protein, and increased intracellular S100β expression after 24 h of incubation, in rat C6 glioma cells. Cinnamon polyphenols also enhanced protein levels of sirtuin 1, 2, and 3, deacetylases important in cell survival, and the tumor suppressor protein, p53, and inhibited the inflammatory factors, tumor necrosis factor alpha, and phospho-p65, a subunit of nuclear factor-κβ. Cinnamon polyphenols also up-regulated levels of phospho-p38, extracellular signal-regulated protein and mitogen-activated protein and kinase-activated protein kinases that may be important for prosurvival functions. Conclusion Our results indicate that the effects of cinnamon polyphenols on upregulating prosurvival proteins, activating mitogen-activated protein kinase pathways, and decreasing proinflammatory cytokines may contribute to their neuroprotective effects.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0899-9007
1873-1244
DOI:10.1016/j.nut.2013.07.001