Testing Inference in Inflated Beta Regressions under Model Misspecification
We consider testing inference in inflated beta regressions subject to model misspecification. In particular, quasi-z tests based on sandwich covariance matrix estimators are described and their finite sample behavior is investigated via Monte Carlo simulations. The numerical evidence shows that quas...
Saved in:
Published in | Communications in statistics. Simulation and computation Vol. 45; no. 2; pp. 625 - 642 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
07.02.2016
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0361-0918 1532-4141 |
DOI | 10.1080/03610918.2013.867995 |
Cover
Loading…
Summary: | We consider testing inference in inflated beta regressions subject to model misspecification. In particular, quasi-z tests based on sandwich covariance matrix estimators are described and their finite sample behavior is investigated via Monte Carlo simulations. The numerical evidence shows that quasi-z testing inference can be considerably more accurate than inference made through the usual z tests, especially when there is model misspecification. Interval estimation is also considered. We also present an empirical application that uses real (not simulated) data. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0361-0918 1532-4141 |
DOI: | 10.1080/03610918.2013.867995 |