Changes in electrical resistivity of swine liver after occlusion and postmortem

The resistivity of swine liver tissue was measured in vivo, during induced ischaemia and post-mortem, so that associated changes in resistivity could be quantified. Plunge electrodes, the four-terminal method and a computer-automated measurement system were used to acquire resistivities between 10Hz...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 40; no. 1; pp. 29 - 33
Main Authors HAEMMERICH, D, OZKAN, O. R, TSAI, J.-Z, STAELIN, S. T, TUNGJITKUSOLMUN, S, MAHVI, D. M, WEBSTER, J. G
Format Journal Article
LanguageEnglish
Published Heidelberg Springer 2002
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The resistivity of swine liver tissue was measured in vivo, during induced ischaemia and post-mortem, so that associated changes in resistivity could be quantified. Plunge electrodes, the four-terminal method and a computer-automated measurement system were used to acquire resistivities between 10Hz and 1 MHz. Liver resistivity was measured in vivo in three animals at 11 locations. At 10 Hz, resistivity was 758 +/- 170 ohm x cm. At 1 MHz, the resistivity was 250 +/- 40 ohm x cm. The resistivity time course was measured during the first 10 min after the liver blood supply in one animal had been occluded. Resistivity increased steadily during occlusion. The change in resistivity of an excised tissue sample was measured during the first 12h after excision in one animal. Resistivity increased during the first 2h by 53% at 10 Hz and by 32% at 1 MHz. After 2h, resistivity decreased, probably owing to membrane breakdown. The resistivity data were fitted to a Cole-Cole circle, from which extracellular resistance Re, intracellular resistance Ri and cell membrane capacitance Cm were estimated. Re increased during the first 2h by 95% and then decreased, suggesting an increase in extracellular volume. Cm increased during the first 4 h by 40%, possibly owing to closure of membrane channels, and then decreased, suggesting membrane breakdown. Ri stayed constant during the initial 6h and then increased.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0140-0118
1741-0444
DOI:10.1007/bf02347692