Genome-wide identification and characterization of cystatin family genes in rice (Oryza sativa L.)

Key messeage 11 Cystatin genes in rice were identified, and their expression patterns were comprehensively analyzed, which reveals multiple roles in both seed development and plant response to environmental variations. Cystatin is a group of small proteins and known to inhibit the activities of cyst...

Full description

Saved in:
Bibliographic Details
Published inPlant cell reports Vol. 34; no. 9; pp. 1579 - 1592
Main Authors Wang, Wei, Zhao, Peng, Zhou, Xue-mei, Xiong, Han-xian, Sun, Meng-xiang
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2015
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Key messeage 11 Cystatin genes in rice were identified, and their expression patterns were comprehensively analyzed, which reveals multiple roles in both seed development and plant response to environmental variations. Cystatin is a group of small proteins and known to inhibit the activities of cysteine proteases in the papain C1A and legumain C13 peptidase families in plants. Cystatin family genes have only been well characterized recently in a few plant species such as Hordeum vulgare and Nicotiana tabacum , which show their critical roles in programmed cell death and responses to biotic stresses. Up to now, little is known about cystatin family genes and their roles in Oryza sativa , a model plant for cereal biology study. Here, we identified 11 cystatin genes in rice genome. Comprehensive expression profile analysis reveals that cystatin family genes in rice display diverse expression pattern. They are temporally regulated at different developmental stages during the process of seed production and germination. Our experiments also reveal that the majority of cystatin genes are responsive to plant hormones and different environmental cues including cold, drought and other abiotic stresses, while some others are very stable under different stresses, indicating their fundamental roles in normal plant development. In addition, their distribution in rice chromosomes and their evolutionary relation to the members of Cystatin family in A. thaliana and N. tabacum have also been analyzed. These works suggest multiple roles of cystatin family genes in both seed development and plant response to environmental variations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0721-7714
1432-203X
DOI:10.1007/s00299-015-1810-0