Site-Specific Pseudouridine Formation in Preribosomal RNA Is Guided by Small Nucleolar RNAs
During the nucleolar maturation of eukaryotic ribosomal RNAs, many selected uridines are converted into pseudouridine by a thus far undefined mechanism. The nucleolus contains a large number of small RNAs (snoRNAs) that share two conserved sequence elements, box H and ACA. In this study, we demonstr...
Saved in:
Published in | Cell Vol. 89; no. 5; pp. 799 - 809 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
30.05.1997
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | During the nucleolar maturation of eukaryotic ribosomal RNAs, many selected uridines are converted into pseudouridine by a thus far undefined mechanism. The nucleolus contains a large number of small RNAs (snoRNAs) that share two conserved sequence elements, box H and ACA. In this study, we demonstrate that site-specific pseudouridylation of rRNAs relies on short ribosomal signal sequences that are complementary to sequences in box H/ACA snoRNAs. Genetic depletion and reconstitution studies on yeast snR5 and snR36 snoRNAs demonstrate that box H/ACA snoRNAs function as guide RNAs in rRNA pseudouridylation. These results define a novel function for snoRNAs and further reinforce the idea that base pairing is the most common way to obtain specific substrate–“enzyme” interactions during rRNA maturation. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0092-8674 1097-4172 |
DOI: | 10.1016/S0092-8674(00)80263-9 |