Bioinspired TiO2 Nanostructure Films with Special Wettability and Adhesion for Droplets Manipulation and Patterning

Patterned surfaces with special wettability and adhesion (sliding, sticky or patterned superoleophobic surface) can be found on many living creatures. They offer a versatile platform for microfluidic management and other biological functions. Inspired by their precise arrangement of structure and ch...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 3; no. 1; p. 3009
Main Authors Lai, Yue-Kun, Tang, Yu-Xin, Huang, Jian-Ying, Pan, Fei, Chen, Zhong, Zhang, Ke-Qin, Fuchs, Harald, Chi, Li-Feng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.10.2013
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Patterned surfaces with special wettability and adhesion (sliding, sticky or patterned superoleophobic surface) can be found on many living creatures. They offer a versatile platform for microfluidic management and other biological functions. Inspired by their precise arrangement of structure and chemical component, we described a facile one-step approach to construct large scale pinecone-like anatase TiO 2 particles (ATP) film. The as-prepared ATP film exhibits excellent superamphiphilic property in air, changes to underwater superoleophobicity with good dynamical stability. In addition, erasable and rewritable patterned superamphiphobic ATP films or three-dimensional (3D) Janus surfaces were constructed for a versatile platform for microfluidic management and biomedical applications. In a proof-of-concept study, robust super-antiwetting feet for artificial anti-oil strider at the oil/water interface, novel superamphiphobic surface for repeatable oil/water separation and multifunctional patterned superamphiphobic ATP template for cell, fluorecent probe and inorganic nanoparticles site-selective immobilization were demonstrated.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/srep03009