3D investigation of thermal stresses in a locomotive ventilated brake disc based on a conjugate thermo-fluid coupling boundary conditions

The frictional heat generated during braking application can cause several negative effects on the brake system such as brake fade, premature wear, thermal cracks and disk thickness variation. It is then important to determine with precision, the temperature field and thermal stresses of the brake d...

Full description

Saved in:
Bibliographic Details
Published inInternational communications in heat and mass transfer Vol. 49; pp. 104 - 109
Main Authors Ghadimi, B., Sajedi, R., Kowsary, F.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.12.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The frictional heat generated during braking application can cause several negative effects on the brake system such as brake fade, premature wear, thermal cracks and disk thickness variation. It is then important to determine with precision, the temperature field and thermal stresses of the brake disc. In this study, thermal stress analyses on a ventilated locomotive wheel-mounted brake disc R920K with a three-dimensional model for two cases (the first case considers braking to a standstill; the second case considers braking on a hill and maintaining a constant speed) were investigated. The rate of braking heat generation is calculated using the assumption of uniform pressure distribution at the contact area. Then, thermal stress analyses for each case were performed. Finally, we have found that the maximum thermal stresses occur in the case with an emergency braking in the beginning of the braking process.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0735-1933
1879-0178
DOI:10.1016/j.icheatmasstransfer.2013.10.009