When epitaxy meets plasma: a path to ordered nanosheets arrays
The possibility of a controlled assembly of 2-dimensional (2D) nanosheets (NSs) into ordered arrays or even more sophisticated structures offers tremendous opportunities in the context of fabrication of a variety of NSs based devices. Reports of such ordered NSs are rare and all conventional “top-do...
Saved in:
Published in | Scientific reports Vol. 3; no. 1; p. 2427 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.08.2013
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The possibility of a controlled assembly of 2-dimensional (2D) nanosheets (NSs) into ordered arrays or even more sophisticated structures offers tremendous opportunities in the context of fabrication of a variety of NSs based devices. Reports of such ordered NSs are rare and all conventional “top-down” methods typically led to coarse structures exhibiting only limited surface quality. In this work, we demonstrate a path to directly synthesis ordered NSs arrays in a plasma activated chemical vapor deposition technique utilizing planar defects formed during hetero-epitaxial growth of crystals featuring a close-packed lattice. As an example, the synthesis of 3C-SiC NSs arrays with well-defined orientation on (001) and (111) Si substrates is shown. A detailed analysis identifies planar defects and the plasma environment as key factors determining the resulting 2D NSs arrays. Consequently, a “planar defects induced selective growth” effect is proposed to elucidate the corresponding growth mechanism. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep02427 |