High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing

Sensors based on whispering gallery resonators have minute footprints and can push achievable sensitivities and resolutions to their limits. Here, we use a microbubble resonator, with a wall thickness of 500 nm and an intrinsic Q-factor of 10(7) in the telecommunications C-band, to investigate aeros...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 24; no. 1; pp. 294 - 299
Main Authors Yang, Yong, Saurabh, Sunny, Ward, Jonathan M, Nic Chormaic, Síle
Format Journal Article
LanguageEnglish
Published United States 11.01.2016
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sensors based on whispering gallery resonators have minute footprints and can push achievable sensitivities and resolutions to their limits. Here, we use a microbubble resonator, with a wall thickness of 500 nm and an intrinsic Q-factor of 10(7) in the telecommunications C-band, to investigate aerostatic pressure sensing via stress and strain of the material. The microbubble is made using two counter-propagating CO(2) laser beams focused onto a microcapillary. The measured sensitivity is 19 GHz/bar at 1.55 μm. We show that this can be further improved to 38 GHz/bar when tested at the 780 nm wavelength range. In this case, the resolution for pressure sensing can reach 0.17 mbar with a Q-factor higher than 5 × 10(7).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/oe.24.000294