Light-induced proton slip and proton leak at the thylakoid membrane
A treatment of leaves of Spinacia oleracea L. with light or with the thiol reagent dithiothreitol in the dark led to partly uncoupled thylakoids. After induction in intact leaves, the partial uncoupling was irreversible at the level of isolated thylakoids. We distinguish between uncoupling by proton...
Saved in:
Published in | Journal of plant physiology Vol. 161; no. 12; pp. 1325 - 1337 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Jena
Elsevier GmbH
01.12.2004
Elsevier Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A treatment of leaves of Spinacia oleracea L. with light or with the thiol reagent dithiothreitol in the dark led to partly uncoupled thylakoids. After induction in intact leaves, the partial uncoupling was irreversible at the level of isolated thylakoids. We distinguish between uncoupling by proton slip, which means a decrease of the H+/e−-ratio due to less efficient proton pumping, and proton leak as defined by enhanced kinetics of proton efflux. Proton slip and proton leak made about equal contributions to the total uncoupling. The enhanced proton efflux kinetics corresponded to reduction of subunit CF1-γ of the ATP synthase as shown by fluorescence labeling of thylakoid proteins with the sulfhydryl probe 5-iodoacetamido fluorescein. The maximum value of the fraction of reduced CF1-γ was only 36%, which indicates that in vivo the reduction of CF1-γ could be limited by fast reoxidation and/or restricted accessibility of CF1-γ to thioredoxin. Measurements of the ratio ATP/2e indicated that only the uncoupling related to less efficient proton pumping led to a decrease in the ATP yield. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0176-1617 1618-1328 |
DOI: | 10.1016/j.jplph.2004.03.007 |