More Information
Summary:Abstract The catabolism of methionine to methionol and methanethiol in Saccharomyces cerevisiae was studied using 13C NMR spectroscopy, GC-MS, enzyme assays and a number of mutants. Methionine is first transaminated to α-keto-γ-(methylthio)butyrate. Methionol is formed by a decarboxylation reaction, which yields methional, followed by reduction. The decarboxylation is effected specifically by Ydr380wp. Methanethiol is formed from both methionine and α-keto-γ-(methylthio)butyrate by a demethiolase activity. In all except one strain examined, demethiolase was induced by the presence of methionine in the growth medium. This pathway results in the production of α-ketobutyrate, a carbon skeleton, which can be re-utilized. Hence, methionine catabolism is more complex and economical than the other amino acid catabolic pathways in yeast, which use the Ehrlich pathway and result solely in the formation of a fusel alcohol.
Bibliography:Editor: Lex Scheffers
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1567-1356
1567-1364
DOI:10.1111/j.1567-1356.2005.00005.x