Translaminar circuits formed by the pyramidal cells in the superficial layers of cat visual cortex
Pyramidal cells in the superficial layers of the neocortex provide a major excitatory projection to layer 5, which contains the pyramidal cells that project to subcortical motor-related targets. Both structurally and functionally rather little is known about this interlaminar pathway, especially in...
Saved in:
Published in | Brain Structure and Function Vol. 223; no. 4; pp. 1811 - 1828 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Pyramidal cells in the superficial layers of the neocortex provide a major excitatory projection to layer 5, which contains the pyramidal cells that project to subcortical motor-related targets. Both structurally and functionally rather little is known about this interlaminar pathway, especially in higher mammals. Here, we made sparse ultrastructural reconstructions of the projection to layer 5 of three pyramidal neurons from layer 3 in cat V1 whose morphology, physiology, and synaptic connections with layers 2 and 3 were known. The dominant targets of the 74 identified synapses in layer 5 were the dendritic spines of pyramidal cells. The fractions of target spiny dendrites were 59, 61, and 84% for the three cells, with the remaining targets being dendrites of smooth neurons. These fractions were similar to the distribution of targets of unlabeled asymmetric synapses in the surrounding neuropil. Serial section reconstructions revealed that the target dendrites were heterogenous in morphology, indicating that different cell types are innervated. This new evidence indicates that the descending projection from the superficial layer pyramidal cells does not simply drive the output pyramidal cells that project to cortical and subcortical targets, but participates in the complex circuitry of the deep cortical layers. |
---|---|
ISSN: | 1863-2653 1863-2661 0340-2061 |
DOI: | 10.1007/s00429-017-1588-7 |