Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: Investigating arsenic fate using integrated spectroscopic and microscopic techniques

In this study, we examined the sorption of arsenite (As(III)) and arsenate (As(V)) to Japanese oak wood-derived biochar (OW-BC) in aqueous solutions, and determined its efficiency to remove As from As-contaminated well water. Results revealed that, among the four sorption isotherm models, Langmuir m...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 621; pp. 1642 - 1651
Main Authors Niazi, Nabeel Khan, Bibi, Irshad, Shahid, Muhammad, Ok, Yong Sik, Shaheen, Sabry M., Rinklebe, Jörg, Wang, Hailong, Murtaza, Behzad, Islam, Ejazul, Farrakh Nawaz, M., Lüttge, Andreas
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, we examined the sorption of arsenite (As(III)) and arsenate (As(V)) to Japanese oak wood-derived biochar (OW-BC) in aqueous solutions, and determined its efficiency to remove As from As-contaminated well water. Results revealed that, among the four sorption isotherm models, Langmuir model showed the best fit to describe As(III) and As(V) sorption on OW-BC, with slightly greater sorption affinity for As(V) compared to As(III) (QL=3.89 and 3.16mgg−1; R2=0.91 and 0.85, respectively). Sorption edge experiments indicated that the maximum As removal was 81% and 84% for As(III)- and As(V)-OW-BC systems at pH7 and 6, respectively, which decreased above these pH values (76–69% and 80–58%). Surface functional groups, notably OH, COOH, CO, CH3, were involved in As sequestration by OW-BC, suggesting the surface complexation/precipitation and/or electrostatic interaction of As on OW-BC surface. Arsenic K-edge X-ray absorption near edge structure (XANES) spectroscopy indicated that 36% of the added As(III) was partially oxidized to As(V) in the As(III) sorption experiment, and in As(V) sorption experiment, 48% of As(V) was, albeit incompletely, reduced to As(III) on OW-BC surface. Application of OW-BC to As-contaminated well water (As: 27–144μgL−1; n=10) displayed that 92 to 100% of As was depleted despite in the presence of co-occurring competing anions (e.g., SO42−, CO32−, PO43−). This study shows that OW-BC has a great potential to remove As from solution and drinking (well) water. Overall, the combination of macroscopic sorption data and integrated spectroscopic and microscopic techniques highlight that the fate of As on biochar involves complex redox transformation and association with surface functional moieties in aquatic systems, thereby providing crucial information required for implication of biochar in environmental remediation programs. [Display omitted] •Arsenic removal efficiency of Japanese oak wood biochar (OW-BC) was explored.•Langmuir model provided the best fit, with a greater QL for arsenate than arsenite.•XANES spectroscopy indicated redox transformation of arsenite⇔arsenate on OW-BC.•FTIR spectra revealed arsenite/arsenate association with functional groups on OW-BC.•OW-BC efficiently removed As (92 to 100%) from drinking well water.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2017.10.063