Surface electromyography and mechanomyography recording: A new differential composite probe

The objective of the study was to develop a new surface probe for differential mechanomyographic (MMG) and electromyographic (EMG) recording. Differential amplification is commonly used in electromyography to improve the signal-to-noise ratio. A new composite probe was developed with two electrodes...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 41; no. 6; pp. 665 - 669
Main Authors Gregori, B., Galié, E., Accornero, N.
Format Journal Article
LanguageEnglish
Published Heidelberg Springer 01.11.2003
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The objective of the study was to develop a new surface probe for differential mechanomyographic (MMG) and electromyographic (EMG) recording. Differential amplification is commonly used in electromyography to improve the signal-to-noise ratio. A new composite probe was developed with two electrodes (EMG) and two identical piezo-electric membranes (MMG) to be positioned on muscle. The probe had two built-in fixed-gain differential amplifiers: one to amplify the electric signal and the other to amplify the vibration signal. A similar non-differential MMG probe was used for comparisons. Burst muscular activity was recorded using the non-differential and differential probes and was used to test the performance of the two probes in suppressing artifacts of non-muscular origin. Power spectrum analysis of signals from the two probes showed that differential amplification significantly improved the signal-to-noise ratio in MMG recordings and significantly suppressed artifacts (power difference > 90%). The composite probe allowed simultaneous differential recording of MMG and EMG signals from the same muscular site. It recorded muscular activity more efficiently than the non-differential probe and could therefore be useful in studying fatigue and neuromuscular diseases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-1
ObjectType-Feature-3
ISSN:0140-0118
1741-0444
DOI:10.1007/BF02349974