Comparative studies on effects of silica and titania nanoparticles on crystallization and complex segmental dynamics in poly(dimethylsiloxane)
Effects of in situ synthesized silica and titania nanoparticles, 5 and 20–40 nm in diameter, respectively, on glass transition and segmental dynamics of poly(dimethylsiloxane) networks were studied by employing differential scanning calorimetry, thermally stimulated depolarization currents and broad...
Saved in:
Published in | Polymer (Guilford) Vol. 51; no. 23; pp. 5490 - 5499 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
29.10.2010
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Effects of in situ synthesized silica and titania nanoparticles, 5 and 20–40 nm in diameter, respectively, on glass transition and segmental dynamics of poly(dimethylsiloxane) networks were studied by employing differential scanning calorimetry, thermally stimulated depolarization currents and broadband dielectric relaxation spectroscopy techniques. Strong interactions between the well dispersed fillers and the polymer suppress crystallinity and affect significantly the evolution of the glass transition in the nanocomposites. Next to the α relaxation associated with the glass transition of the bulk amorphous polymer fraction, two more segmental relaxations were recorded, originating from polymer chains restricted between condensed crystal regions (αc-relaxation) and the semi-bound polymer in an interfacial layer with strongly reduced mobility due to interactions with hydroxyls on the nanoparticle surface (α′ relaxation), respectively. Interactions with the polymer were found to be stronger in the case of titania than silica, leading to an estimated interaction length of around 2 nm for silica and at least double for titania nanocomposites.
[Display omitted] |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0032-3861 1873-2291 |
DOI: | 10.1016/j.polymer.2010.09.054 |