An exopolysaccharide from Bacillus subtilis alleviates airway inflammatory responses via the NF-κB and STAT6 pathways in asthmatic mice
Bacillus subtilis is an intestinal probiotic for immune homeostasis and its exopolysaccharide (EPS) is known to possess anti-inflammatory and antioxidant properties. The underlying mechanisms are not yet fully understood. In the present study, we investigated the effects of the EPS (50, 100, 200 mg/...
Saved in:
Published in | Bioscience reports Vol. 42; no. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Portland Press Ltd The Biochemical Society
28.01.2022
Portland Press Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Bacillus subtilis is an intestinal probiotic for immune homeostasis and its exopolysaccharide (EPS) is known to possess anti-inflammatory and antioxidant properties. The underlying mechanisms are not yet fully understood. In the present study, we investigated the effects of the EPS (50, 100, 200 mg/kg) on airway inflammation in asthmatic mice. Our results showed that EPS treatment of asthmatic mice significantly alleviated pathological damage in the lungs, remarkably decreased the counts of total inflammatory cells including lymphocytes, and eosinophils in the bronchoalveolar lavage fluid (BALF) and reduced indexes of oxidative damage. Moreover, the expression of type II T-helper cell (Th2) cytokines (interleukin- (IL)4 and -5) subsequent to EPS treatment was found to be dramatically down-regulated in a concentration-dependent manner. Additionally, the EPS treatment reduced JAK1, STAT6 and nuclear factor-κB (NF-κB) expression in the lungs of asthmatic mice. Taken together, these results suggest that the EPS from B. subtilis alleviates asthmatic airway inflammation, which involves the reduction in reactive oxygen species (ROS) and the down-regulation of the STAT6 and NF-κB inflammatory pathways, which can further reduce Th2 cytokine expression and eosinophilic inflammation. Thus, our findings provide a potential mechanism through which the EPS mitigates asthma, suggesting that the EPS could be a potential source of an anti-asthmatic drug. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0144-8463 1573-4935 1573-4935 |
DOI: | 10.1042/BSR20212461 |