Fluorescence ratio thermometry in a microfluidic dual-beam laser trap
The dual-beam laser trap is a versatile tool with many possible applications. In order to characterize its thermal properties in a microfluidic trap geometry we have developed a non-intrusive fluorescence ratio technique using the temperature sensitive dye Rhodamine B and the temperature independent...
Saved in:
Published in | Optics express Vol. 15; no. 23; pp. 15493 - 15499 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
12.11.2007
|
Online Access | Get full text |
Cover
Loading…
Summary: | The dual-beam laser trap is a versatile tool with many possible applications. In order to characterize its thermal properties in a microfluidic trap geometry we have developed a non-intrusive fluorescence ratio technique using the temperature sensitive dye Rhodamine B and the temperature independent reference dye Rhodamine 110. We measured temperature distribution profiles in the trap with submicron spatial resolution on a confocal laser-scanning microscope. The maximum heating in the center of the trap amounts to (13 +/- 2) degrees C/W for a wavelength of lambda = 1064 nm and scales linearly with the applied power. The measurements correspond well with simulated temperature distributions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/oe.15.015493 |