Characterization of Human Junctophilin Subtype Genes

Junctophilin (JP) subtypes, namely JP-1, 2, and 3, have been currently identified in excitable cells and constitute a novel family of junctional membrane complex proteins. Our studies have suggested that JPs take part in the formation of junctional membrane complexes by spanning the membrane of the...

Full description

Saved in:
Bibliographic Details
Published inBiochemical and biophysical research communications Vol. 273; no. 3; pp. 920 - 927
Main Authors Nishi, Miyuki, Mizushima, Akiko, Nakagawara, Kan-ichi, Takeshima, Hiroshi
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 14.07.2000
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Junctophilin (JP) subtypes, namely JP-1, 2, and 3, have been currently identified in excitable cells and constitute a novel family of junctional membrane complex proteins. Our studies have suggested that JPs take part in the formation of junctional membrane complexes by spanning the membrane of the intracellular Ca2+ store and interacting with the cell-surface membrane. In this report we describe the primary structures, genomic organization, and tissue distribution of human JP subtypes. By cloning and analyzing human genomic DNA segments, the protein-coding sequence interrupted with four introns was defined in each JP gene. The deduced human JP subtypes shared characteristic structural features with their rabbit and mouse counterparts. Genomic mapping demonstrated that JP genes do not cluster on the human genome. RNA blot hybridization indicated that tissue-specific expression patterns of JP genes in human are essentially the same as those in mouse; skeletal muscle contained both JP-1 and JP-2 mRNAs, the heart predominantly expressed JP-2 mRNA, and the brain specifically contained JP-3 mRNA. In the light of this, we propose intramolecular domains of JP subtypes based on the structural and functional characteristics.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0006-291X
1090-2104
DOI:10.1006/bbrc.2000.3011