Development and thermal behaviour of ternary PLA matrix composites
Biodegradable PLA composites were prepared using microcrystalline cellulose (MCC) and silver (Ag) nanoparticles. The main objective of the present study is to develop new biopolymer composites with good mechanical properties, thermal stability, maintaining the optical transparency and also providing...
Saved in:
Published in | Polymer degradation and stability Vol. 95; no. 11; pp. 2200 - 2206 |
---|---|
Main Authors | , , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.11.2010
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Biodegradable PLA composites were prepared using microcrystalline cellulose (MCC) and silver (Ag) nanoparticles. The main objective of the present study is to develop new biopolymer composites with good mechanical properties, thermal stability, maintaining the optical transparency and also providing antimicrobial properties through silver nanoparticle introduction. Composites were prepared with 1%wt of Ag nanoparticles and 5%wt of MCC using a twin-screw microextruder; film parameters were optimized in order to obtain a thickness range between 20 and 60
μm.
PLA composites maintained optical transparency properties of the matrix, while MCC was able to reduce polymer permeability. Thermal analysis revealed that MCC increased PLA crystallinity and the mechanical properties of the composites demonstrated that tensile modulus was improved by microcrystalline cellulose. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0141-3910 1873-2321 |
DOI: | 10.1016/j.polymdegradstab.2010.02.034 |