REGIONAL CLIMATE–WEATHER RESEARCH AND FORECASTING MODEL

The CWRF is developed as a climateextensionof the Weather Research and Forecasting model (WRF) by incorporating numerous improvements in the representation of physical processes and integration of external (top, surface, lateral) forcings that are crucial to climate scales, including interactions be...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the American Meteorological Society Vol. 93; no. 9; pp. 1363 - 1387
Main Authors Liang, Xin-Zhong, Xu, Min, Yuan, Xing, Ling, Tiejun, Choi, Hyun I., Zhang, Feng, Chen, Ligang, Liu, Shuyan, Su, Shenjian, Qiao, Fengxue, He, Yuxiang, Wang, Julian X. L., Kunkel, Kenneth E., Gao, Wei, Joseph, Everette, Morris, Vernon, Yu, Tsann-Wang, Dudhia, Jimy, Michalakes, John
Format Journal Article
LanguageEnglish
Published Boston American Meteorological Society 01.09.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The CWRF is developed as a climateextensionof the Weather Research and Forecasting model (WRF) by incorporating numerous improvements in the representation of physical processes and integration of external (top, surface, lateral) forcings that are crucial to climate scales, including interactions between land, atmosphere, and ocean; convection and microphysics; and cloud, aerosol, and radiation; and system consistency throughout all process modules. This extension inherits all WRF functionalities for numerical weather prediction while enhancing the capability for climate modeling. As such, CWRF can be applied seamlessly to weather forecast and climate prediction. The CWRF is built with a comprehensiveensembleof alternative parameterization schemes for each of the key physical processes, including surface (land, ocean), planetary boundary layer, cumulus (deep, shallow), microphysics, cloud, aerosol, and radiation, and their interactions. This facilitates the use of an optimized physics ensemble approach to improve weather or climate prediction along with a reliable uncertainty estimate. The CWRF also emphasizes the societalservicecapability to provide impactrelevant information by coupling with detailed models of terrestrial hydrology, coastal ocean, crop growth, air quality, and a recently expanded interactive water quality and ecosystem model. This study provides a general CWRF description and basic skill evaluation based on a continuous integration for the period 1979–2009 as compared with that of WRF, using a 30-km grid spacing over a domain that includes the contiguous United States plus southern Canada and northern Mexico. In addition to advantages of greater application capability, CWRF improves performance in radiation and terrestrial hydrology over WRF and other regional models. Precipitation simulation, however, remains a challenge for all of the tested models.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-0007
1520-0477
1520-0477
DOI:10.1175/bams-d-11-00180.1