Mir-142-3P regulates MAPK protein family by inhibiting 14-3-3η to enhance bone marrow mesenchymal stem cells osteogenesis

Clinical studies have found 14-3-3η to be associated with osteoporosis through undefined mechanisms. We aimed to investigate the role of 14-3-3η in osteoporosis and its potential associations with miRNAs. The Gene Expression Omnibus(GEO) and Human Protein Atlas 1 databases were analyzed to examine b...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; p. 22862
Main Authors Liu, Ya-qian, Xu, Yue-chen, Shuai, Zong-wen
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.12.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Clinical studies have found 14-3-3η to be associated with osteoporosis through undefined mechanisms. We aimed to investigate the role of 14-3-3η in osteoporosis and its potential associations with miRNAs. The Gene Expression Omnibus(GEO) and Human Protein Atlas 1 databases were analyzed to examine both the mRNA and protein expression of 14-3-3η in OP. Gene enrichment analyses were performed to explore the underlying mechanism of 14-3-3η based on DAVID. miRWalk was used to predict the associated miRNAs. The statistics were analysed by R software and SPSS software.  14-3-3η was overexpressed and knock down expressed in BMSCs by lentiviral vector transfecting. And BMSCs were induced by hypoxia. qRT-PCR and Western-Blot verified the expression of mRNA and protein. Scratch assay detected the migration of osteocytes. Co-immunoprecipitation and luciferase assay studied the 14-3-3η targeted protein and miRNA. overexpression and knock down of miRNA to verify the relationship of 14-3-3η and target genes. The 14-3-3η mRNA expression level was low in patients with osteoporosis, as corroborated by immunohistochemical staining images. Functional analyses revealed enrichment of the MAPK-associated cascade. 14-3-3η was correlated with MAPK family proteins and five key miRNAs, including mir-142-3p. In addition, 14-3-3η knockdown in BMSCs increased the mRNA and protein expression levels of Hif-α, VEGF, BMP-2, OPN, OST, and Runx2, and enhanced the cells migration ability. Under hypoxic conditions, Hif-α and BMP-2 protein expression levels were upregulated, whereas those of 14-3-3η and MAPK3 were downregulated. Co-immunoprecipitation experiments showed decreased binding of 14-3-3η to MAPK3. 14-3-3η knockdown produced the same results as hypoxia induction. Adding caspase3 inhibitor and knocking down 14-3-3η again prevented MAPK3 cleavage by caspase3 and inhibited BMP-2 expression. Moreover, under hypoxic conditions, miR-142-3P expression was upregulated and luciferase assays revealed 14-3-3η as its target gene. miR-142-3P overexpression decreased mRNA and protein levels of 14-3-3η and MAPK3, while increasing BMP-2 expression. miR-142-3P knockdown reversed these results. BMSC osteogenesis was suppressed by 14-3-3η , whereas miRNA-142-3p promoted it through the inhibition of 14-3-3η .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-48950-4