X-ray-activated nanosystems for theranostic applications

X-rays are widely applied in clinical medical facilities for radiotherapy (RT) and biomedical imaging. However, the sole use of X-rays for cancer treatment leads to insufficient radiation energy deposition due to the low X-ray attenuation coefficients of living tissues and organs, producing unavoida...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 48; no. 11; pp. 373 - 311
Main Authors Chen, Xiaofeng, Song, Jibin, Chen, Xiaoyuan, Yang, Huanghao
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 04.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract X-rays are widely applied in clinical medical facilities for radiotherapy (RT) and biomedical imaging. However, the sole use of X-rays for cancer treatment leads to insufficient radiation energy deposition due to the low X-ray attenuation coefficients of living tissues and organs, producing unavoidable excessive radiation doses with serious side effects to healthy body parts. Over the past decade, developments in materials science and nanotechnology have led to rapid progress in the field of X-ray-activated tumor-targeting nanosystems, which are able to tackle even systemic tumors and relieve the burden of exposure to large radiation doses. Additionally, novel imaging contrast agents and techniques have also been developed. In comparison with conventional external light sources ( e.g. , near infrared), the X-ray technique is ideal for the activation of nanosystems for cancer treatment and biomedical imaging applications due to its nearly unlimited penetration depth in living tissues and organisms. In this review, we systematically describe the interaction mechanisms between X-rays and nanosystems, and provide an overview of X-ray-sensitive materials and the recent progress on X-ray-activated nanosystems for cancer-associated theranostic applications. We systematically provide an overview of X-ray-sensitive materials and the recent progress on X-ray-activated nanosystems for cancer-associated theranostic applications.
AbstractList X-rays are widely applied in clinical medical facilities for radiotherapy (RT) and biomedical imaging. However, the sole use of X-rays for cancer treatment leads to insufficient radiation energy deposition due to the low X-ray attenuation coefficients of living tissues and organs, producing unavoidable excessive radiation doses with serious side effects to healthy body parts. Over the past decade, developments in materials science and nanotechnology have led to rapid progress in the field of X-ray-activated tumor-targeting nanosystems, which are able to tackle even systemic tumors and relieve the burden of exposure to large radiation doses. Additionally, novel imaging contrast agents and techniques have also been developed. In comparison with conventional external light sources (e.g., near infrared), the X-ray technique is ideal for the activation of nanosystems for cancer treatment and biomedical imaging applications due to its nearly unlimited penetration depth in living tissues and organisms. In this review, we systematically describe the interaction mechanisms between X-rays and nanosystems, and provide an overview of X-ray-sensitive materials and the recent progress on X-ray-activated nanosystems for cancer-associated theranostic applications.
X-rays are widely applied in clinical medical facilities for radiotherapy (RT) and biomedical imaging. However, the sole use of X-rays for cancer treatment leads to insufficient radiation energy deposition due to the low X-ray attenuation coefficients of living tissues and organs, producing unavoidable excessive radiation doses with serious side effects to healthy body parts. Over the past decade, developments in materials science and nanotechnology have led to rapid progress in the field of X-ray-activated tumor-targeting nanosystems, which are able to tackle even systemic tumors and relieve the burden of exposure to large radiation doses. Additionally, novel imaging contrast agents and techniques have also been developed. In comparison with conventional external light sources ( e.g. , near infrared), the X-ray technique is ideal for the activation of nanosystems for cancer treatment and biomedical imaging applications due to its nearly unlimited penetration depth in living tissues and organisms. In this review, we systematically describe the interaction mechanisms between X-rays and nanosystems, and provide an overview of X-ray-sensitive materials and the recent progress on X-ray-activated nanosystems for cancer-associated theranostic applications. We systematically provide an overview of X-ray-sensitive materials and the recent progress on X-ray-activated nanosystems for cancer-associated theranostic applications.
X-rays are widely applied in clinical medical facilities for radiotherapy (RT) and biomedical imaging. However, the sole use of X-rays for cancer treatment leads to insufficient radiation energy deposition due to the low X-ray attenuation coefficients of living tissues and organs, producing unavoidable excessive radiation doses with serious side effects to healthy body parts. Over the past decade, developments in materials science and nanotechnology have led to rapid progress in the field of X-ray-activated tumor-targeting nanosystems, which are able to tackle even systemic tumors and relieve the burden of exposure to large radiation doses. Additionally, novel imaging contrast agents and techniques have also been developed. In comparison with conventional external light sources (e.g., near infrared), the X-ray technique is ideal for the activation of nanosystems for cancer treatment and biomedical imaging applications due to its nearly unlimited penetration depth in living tissues and organisms. In this review, we systematically describe the interaction mechanisms between X-rays and nanosystems, and provide an overview of X-ray-sensitive materials and the recent progress on X-ray-activated nanosystems for cancer-associated theranostic applications.X-rays are widely applied in clinical medical facilities for radiotherapy (RT) and biomedical imaging. However, the sole use of X-rays for cancer treatment leads to insufficient radiation energy deposition due to the low X-ray attenuation coefficients of living tissues and organs, producing unavoidable excessive radiation doses with serious side effects to healthy body parts. Over the past decade, developments in materials science and nanotechnology have led to rapid progress in the field of X-ray-activated tumor-targeting nanosystems, which are able to tackle even systemic tumors and relieve the burden of exposure to large radiation doses. Additionally, novel imaging contrast agents and techniques have also been developed. In comparison with conventional external light sources (e.g., near infrared), the X-ray technique is ideal for the activation of nanosystems for cancer treatment and biomedical imaging applications due to its nearly unlimited penetration depth in living tissues and organisms. In this review, we systematically describe the interaction mechanisms between X-rays and nanosystems, and provide an overview of X-ray-sensitive materials and the recent progress on X-ray-activated nanosystems for cancer-associated theranostic applications.
X-rays are widely applied in clinical medical facilities for radiotherapy (RT) and biomedical imaging. However, the sole use of X-rays for cancer treatment leads to insufficient radiation energy deposition due to the low X-ray attenuation coefficients of living tissues and organs, producing unavoidable excessive radiation doses with serious side effects to healthy body parts. Over the past decade, developments in materials science and nanotechnology have led to rapid progress in the field of X-ray-activated tumor-targeting nanosystems, which are able to tackle even systemic tumors and relieve the burden of exposure to large radiation doses. Additionally, novel imaging contrast agents and techniques have also been developed. In comparison with conventional external light sources ( e.g. , near infrared), the X-ray technique is ideal for the activation of nanosystems for cancer treatment and biomedical imaging applications due to its nearly unlimited penetration depth in living tissues and organisms. In this review, we systematically describe the interaction mechanisms between X-rays and nanosystems, and provide an overview of X-ray-sensitive materials and the recent progress on X-ray-activated nanosystems for cancer-associated theranostic applications.
Author Chen, Xiaoyuan
Yang, Huanghao
Chen, Xiaofeng
Song, Jibin
AuthorAffiliation MOE Key Laboratory for Analytical Science of Food Safety and Biology
Fuzhou University
National Institutes of Health
College of Chemistry
Laboratory of Molecular Imaging and Nanomedicine
National Institute of Biomedical Imaging and Bioengineering
AuthorAffiliation_xml – sequence: 0
  name: MOE Key Laboratory for Analytical Science of Food Safety and Biology
– sequence: 0
  name: College of Chemistry
– sequence: 0
  name: National Institute of Biomedical Imaging and Bioengineering
– sequence: 0
  name: Fuzhou University
– sequence: 0
  name: Laboratory of Molecular Imaging and Nanomedicine
– sequence: 0
  name: National Institutes of Health
Author_xml – sequence: 1
  givenname: Xiaofeng
  surname: Chen
  fullname: Chen, Xiaofeng
– sequence: 2
  givenname: Jibin
  surname: Song
  fullname: Song, Jibin
– sequence: 3
  givenname: Xiaoyuan
  surname: Chen
  fullname: Chen, Xiaoyuan
– sequence: 4
  givenname: Huanghao
  surname: Yang
  fullname: Yang, Huanghao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31106315$$D View this record in MEDLINE/PubMed
BookMark eNqN0UtLAzEQB_Agin3oxbtS8CLCal6bTY5SfFLwoIK3JZ1NMGUfNckK_fZuXwrFg6cM4TcDM_8B2q-b2iB0QvAVwUxdg4SAsaJktof6hAuc8IzzfdTHDIsEY0J7aBDCrKtIJugh6jFCsGAk7SP5nni9SDRE96WjKUa1rpuwCNFUYWQbP4ofxi-_ooORns9LBzq6pg5H6MDqMpjjzTtEb3e3r-OHZPJ8_zi-mSTAmYiJlRQyxqUShPAUU1Cp1gqAg8nSQlBgmqnCTumUYsnp1CpmGbeZtVJLsJoN0cV67tw3n60JMa9cAFOWujZNG3JKpVBYiUz9gzKKMyIp7-j5Dp01ra-7RZaKp6nKKOnU2Ua108oU-dy7SvtFvj1fB_AagG9C8Mbm4OLqPtFrV-YE58uE8rEcv6wSeupaLndatlP_xKdr7AP8uN-42Tfgi5iS
CitedBy_id crossref_primary_10_1021_acsnano_1c01146
crossref_primary_10_1002_adma_202301612
crossref_primary_10_1002_adfm_202404123
crossref_primary_10_1021_acs_accounts_2c00699
crossref_primary_10_1038_s41467_022_30917_0
crossref_primary_10_5802_crchim_309
crossref_primary_10_1002_adfm_202301002
crossref_primary_10_1039_D0NR01821J
crossref_primary_10_1021_acsami_1c11032
crossref_primary_10_1007_s11432_024_4057_0
crossref_primary_10_1002_EXP_20230124
crossref_primary_10_1039_D1DT02207E
crossref_primary_10_34133_2021_9892152
crossref_primary_10_1021_acsabm_2c00801
crossref_primary_10_2139_ssrn_4118526
crossref_primary_10_1039_C9NA00583H
crossref_primary_10_1002_adma_202004385
crossref_primary_10_3390_nano13111790
crossref_primary_10_1002_ange_202210415
crossref_primary_10_1016_j_jrras_2024_100963
crossref_primary_10_1016_j_mattod_2024_07_004
crossref_primary_10_1186_s12951_021_00862_z
crossref_primary_10_1002_ange_202308194
crossref_primary_10_1016_j_ijpharm_2020_119320
crossref_primary_10_1021_acs_nanolett_4c00223
crossref_primary_10_1039_D3NA00397C
crossref_primary_10_1002_anie_202112237
crossref_primary_10_1016_j_cej_2024_150583
crossref_primary_10_34133_research_0090
crossref_primary_10_1016_j_ccr_2024_216101
crossref_primary_10_1002_ange_202109802
crossref_primary_10_1093_nsr_nwaf045
crossref_primary_10_1080_19392699_2024_2363857
crossref_primary_10_1016_j_nantod_2020_101014
crossref_primary_10_1002_adma_202413210
crossref_primary_10_1002_ange_202306100
crossref_primary_10_1002_ange_202422995
crossref_primary_10_1021_acs_jpclett_2c02057
crossref_primary_10_1002_adma_202105783
crossref_primary_10_1021_acs_chemmater_4c00020
crossref_primary_10_1002_anie_202107231
crossref_primary_10_1016_j_actbio_2022_10_049
crossref_primary_10_1002_adfm_202301462
crossref_primary_10_3390_ma15093251
crossref_primary_10_1016_j_nantod_2021_101208
crossref_primary_10_1021_acsnano_1c08350
crossref_primary_10_1039_D0NR04634E
crossref_primary_10_1002_adfm_202113353
crossref_primary_10_1088_1402_4896_ace1b7
crossref_primary_10_1021_acsanm_1c01115
crossref_primary_10_1016_j_addr_2023_114763
crossref_primary_10_1002_advs_202309992
crossref_primary_10_1039_D2BM00101B
crossref_primary_10_1021_acsnano_9b08133
crossref_primary_10_1039_D2RA01425D
crossref_primary_10_1002_anie_202306100
crossref_primary_10_1016_j_ccr_2024_216006
crossref_primary_10_3390_ijms20143490
crossref_primary_10_1016_j_ijbiomac_2024_135608
crossref_primary_10_1002_lpor_202400147
crossref_primary_10_1002_adma_202203734
crossref_primary_10_1039_D3TB00608E
crossref_primary_10_1002_smll_202500504
crossref_primary_10_1007_s11740_022_01147_6
crossref_primary_10_1039_D0TB02294B
crossref_primary_10_1016_j_addr_2025_115549
crossref_primary_10_1039_D3QI02301J
crossref_primary_10_1002_cbic_202300155
crossref_primary_10_1016_j_bioactmat_2022_01_014
crossref_primary_10_3390_ma13225234
crossref_primary_10_1016_j_cclet_2022_03_054
crossref_primary_10_1002_smll_202006582
crossref_primary_10_1016_j_mattod_2022_05_022
crossref_primary_10_1186_s12951_022_01631_2
crossref_primary_10_1002_adfm_202107530
crossref_primary_10_1007_s12274_022_4369_4
crossref_primary_10_1002_VIW_20200043
crossref_primary_10_1016_j_actbio_2020_06_044
crossref_primary_10_1039_D0RA01935F
crossref_primary_10_1016_j_cclet_2022_02_016
crossref_primary_10_1039_D2TC01117D
crossref_primary_10_1002_advs_202001675
crossref_primary_10_1039_D4DT02969K
crossref_primary_10_1016_j_jlumin_2023_119929
crossref_primary_10_1007_s12274_020_3136_7
crossref_primary_10_1016_j_matt_2024_11_030
crossref_primary_10_1080_1536383X_2021_1993443
crossref_primary_10_1111_jace_17643
crossref_primary_10_3390_biomedicines9010069
crossref_primary_10_1002_smll_201903254
crossref_primary_10_1016_j_ccr_2024_215696
crossref_primary_10_3390_targets1010004
crossref_primary_10_1016_j_cej_2024_153363
crossref_primary_10_1021_acs_nanolett_2c02472
crossref_primary_10_1002_advs_202004391
crossref_primary_10_1186_s43593_022_00024_0
crossref_primary_10_1016_j_cej_2021_129262
crossref_primary_10_1007_s11033_021_06524_5
crossref_primary_10_1016_j_jddst_2023_105140
crossref_primary_10_1038_s41565_021_00922_3
crossref_primary_10_1039_D1NR03034E
crossref_primary_10_1039_D1TC00525A
crossref_primary_10_1021_acsami_0c06010
crossref_primary_10_1002_wnan_1642
crossref_primary_10_1016_j_jlumin_2021_118589
crossref_primary_10_1007_s40843_022_2140_7
crossref_primary_10_1002_adpr_202300296
crossref_primary_10_1016_j_cclet_2023_108899
crossref_primary_10_1016_j_jlumin_2024_120511
crossref_primary_10_1039_D3CS00862B
crossref_primary_10_1126_sciadv_adq3940
crossref_primary_10_1016_j_nantod_2020_101003
crossref_primary_10_1016_j_engreg_2024_01_002
crossref_primary_10_1016_j_nantod_2023_102095
crossref_primary_10_1038_s41467_024_47559_z
crossref_primary_10_1080_10420150_2019_1667357
crossref_primary_10_1021_acs_jpcc_2c01737
crossref_primary_10_1002_VIW_20200149
crossref_primary_10_1186_s12951_022_01494_7
crossref_primary_10_1002_ange_202112237
crossref_primary_10_1016_j_nantod_2021_101099
crossref_primary_10_1021_acsami_4c11585
crossref_primary_10_1016_j_ajps_2024_100954
crossref_primary_10_1038_s41566_020_00751_1
crossref_primary_10_2217_nnm_2021_0427
crossref_primary_10_1038_s41557_024_01501_4
crossref_primary_10_1002_adom_202402739
crossref_primary_10_1364_OME_502982
crossref_primary_10_1007_s12274_022_4191_z
crossref_primary_10_1007_s00604_022_05411_5
crossref_primary_10_15407_fm29_02_189
crossref_primary_10_3390_cimb46110748
crossref_primary_10_1002_advs_201902561
crossref_primary_10_1002_ange_202406332
crossref_primary_10_1038_s41467_022_32054_0
crossref_primary_10_1002_adfm_202006353
crossref_primary_10_1039_D4CS00599F
crossref_primary_10_1007_s11426_022_1355_6
crossref_primary_10_1016_j_cej_2024_156964
crossref_primary_10_3390_polym15061490
crossref_primary_10_1515_nanoph_2021_0254
crossref_primary_10_1016_j_jddst_2023_104674
crossref_primary_10_1002_smll_202300341
crossref_primary_10_1002_adfm_201906010
crossref_primary_10_1038_s41551_024_01274_8
crossref_primary_10_1021_acsami_2c02484
crossref_primary_10_1016_j_pbiomolbio_2022_08_006
crossref_primary_10_1021_acsami_4c23023
crossref_primary_10_1002_adma_202007488
crossref_primary_10_1016_j_ccr_2020_213355
crossref_primary_10_1016_j_jallcom_2023_169845
crossref_primary_10_1016_j_matpr_2022_05_005
crossref_primary_10_1002_anie_202422995
crossref_primary_10_1007_s40843_023_2548_8
crossref_primary_10_1039_D2BM01496C
crossref_primary_10_1002_adma_202314083
crossref_primary_10_1016_j_jlumin_2023_119862
crossref_primary_10_1002_ange_202107231
crossref_primary_10_1186_s12951_022_01537_z
crossref_primary_10_1063_5_0198695
crossref_primary_10_1016_j_cej_2024_154652
crossref_primary_10_1021_acsnano_2c08047
crossref_primary_10_1002_bmm2_12136
crossref_primary_10_1016_j_nanoen_2020_105437
crossref_primary_10_1039_D0DT00974A
crossref_primary_10_3390_s22031184
crossref_primary_10_1016_j_biomaterials_2024_122797
crossref_primary_10_1002_adma_202005062
crossref_primary_10_1002_advs_202207004
crossref_primary_10_1016_j_jlumin_2022_119437
crossref_primary_10_3390_cancers12092491
crossref_primary_10_1016_j_chempr_2024_07_035
crossref_primary_10_1021_acsbiomaterials_1c00543
crossref_primary_10_1021_acs_accounts_2c00517
crossref_primary_10_1016_j_cej_2024_158683
crossref_primary_10_1016_j_mattod_2024_06_017
crossref_primary_10_1002_anie_202109802
crossref_primary_10_1021_acs_analchem_3c01099
crossref_primary_10_1016_j_biomaterials_2022_121810
crossref_primary_10_1016_j_pmatsci_2021_100871
crossref_primary_10_1002_lpor_202300565
crossref_primary_10_1021_acsami_4c17909
crossref_primary_10_1016_j_addr_2022_114643
crossref_primary_10_1002_bmm2_12122
crossref_primary_10_1039_D4NR02311K
crossref_primary_10_1016_j_trechm_2022_05_001
crossref_primary_10_1021_acsenergylett_0c02430
crossref_primary_10_1039_D3TC03925K
crossref_primary_10_1186_s12951_023_02279_2
crossref_primary_10_1002_advs_202302395
crossref_primary_10_1039_D2TB00141A
crossref_primary_10_1002_anie_202308194
crossref_primary_10_1016_j_biomaterials_2020_120239
crossref_primary_10_1016_j_eng_2024_06_010
crossref_primary_10_1016_j_jddst_2023_104525
crossref_primary_10_1039_D4CP03281K
crossref_primary_10_3390_cryst10050370
crossref_primary_10_3390_cancers13143484
crossref_primary_10_1088_1361_6528_ad183e
crossref_primary_10_1039_D3TB03046F
crossref_primary_10_1021_acsanm_4c02091
crossref_primary_10_1021_acs_chemrev_3c00506
crossref_primary_10_1039_C9CS00330D
crossref_primary_10_1002_anie_202425661
crossref_primary_10_1016_j_jlumin_2022_119492
crossref_primary_10_1039_D1CS01145F
crossref_primary_10_1002_adhm_202404144
crossref_primary_10_3390_targets2040019
crossref_primary_10_1021_acs_chemrev_2c00404
crossref_primary_10_1002_adma_202109920
crossref_primary_10_1002_advs_202103444
crossref_primary_10_1039_D3QI00777D
crossref_primary_10_1002_adma_202000377
crossref_primary_10_1016_j_msec_2021_112122
crossref_primary_10_2139_ssrn_4088392
crossref_primary_10_3390_ma16031147
crossref_primary_10_1002_adom_202200694
crossref_primary_10_1039_D4TC02985B
crossref_primary_10_1002_advs_202402039
crossref_primary_10_1002_anie_202406332
crossref_primary_10_1186_s12951_024_03057_4
crossref_primary_10_1126_sciadv_abn1675
crossref_primary_10_1016_j_jlumin_2022_119241
crossref_primary_10_1039_D1TB02524D
crossref_primary_10_1002_advs_202003584
crossref_primary_10_1021_acsnano_1c11422
crossref_primary_10_1016_j_addr_2022_114457
crossref_primary_10_1039_D4BM00395K
crossref_primary_10_2139_ssrn_4088391
crossref_primary_10_1002_advs_202308632
crossref_primary_10_1016_j_onano_2023_100152
crossref_primary_10_1002_adfm_202104325
crossref_primary_10_3390_cancers13174447
crossref_primary_10_1002_adom_202203038
crossref_primary_10_55696_ejset_1101711
crossref_primary_10_1016_j_ccr_2022_214999
crossref_primary_10_1002_smll_202105160
crossref_primary_10_1002_ange_202425661
crossref_primary_10_1016_j_cclet_2024_109632
crossref_primary_10_1021_acsnano_2c07286
crossref_primary_10_1016_j_pmatsci_2023_101167
crossref_primary_10_1039_D1NR07096G
crossref_primary_10_1016_j_pmatsci_2024_101246
crossref_primary_10_1002_adfm_202305866
crossref_primary_10_1038_s41377_022_00808_6
crossref_primary_10_1016_j_biomaterials_2024_122620
crossref_primary_10_1186_s12951_024_02931_5
crossref_primary_10_1016_j_isci_2022_105593
crossref_primary_10_1038_s41392_023_01332_8
crossref_primary_10_1016_j_colsurfb_2023_113303
crossref_primary_10_1016_j_biomaterials_2024_123031
crossref_primary_10_1016_j_oor_2024_100307
crossref_primary_10_1039_D4CS00708E
crossref_primary_10_1016_j_compscitech_2024_110700
crossref_primary_10_1002_adhm_202101174
crossref_primary_10_1016_j_ccr_2022_214866
crossref_primary_10_1038_s41566_020_00744_0
crossref_primary_10_1016_j_cej_2024_150364
crossref_primary_10_1016_j_jcis_2022_06_174
crossref_primary_10_31857_S1028096023010156
crossref_primary_10_1002_cplu_202300352
crossref_primary_10_1002_adfm_202113168
crossref_primary_10_1002_adma_202310663
crossref_primary_10_1016_j_mtnano_2022_100253
crossref_primary_10_1021_acsabm_0c00573
crossref_primary_10_1021_acsnano_3c01068
crossref_primary_10_1007_s12274_020_3000_9
crossref_primary_10_3390_ma16020830
crossref_primary_10_3788_LOP232120
crossref_primary_10_1002_adhm_202400372
crossref_primary_10_1002_anie_202210415
crossref_primary_10_1039_D3CS00087G
crossref_primary_10_1186_s12951_021_01191_x
Cites_doi 10.1038/s41467-018-04703-w
10.1039/C7TB01425B
10.1002/adfm.201703832
10.1158/0008-5472.CAN-04-1525
10.1007/s10555-007-9056-0
10.1021/cr000040l
10.1016/j.biomaterials.2007.04.032
10.1039/C4NR00708E
10.1021/acsnano.7b00476
10.3390/nano8050306
10.1016/j.biomaterials.2017.05.025
10.1021/acs.chemrev.6b00290
10.1021/nl504123r
10.1002/smll.201501923
10.1021/ar5000067
10.1111/j.1600-065X.2008.00610.x
10.1021/acsnano.8b01010
10.1016/j.ccr.2013.11.017
10.1021/acs.chemrev.5b00125
10.1021/jacs.8b11593
10.1021/acs.nanolett.8b04763
10.1002/adma.201701268
10.1002/adom.201400571
10.1109/TMI.2010.2055883
10.1021/nn506107c
10.1039/C6CS00616G
10.1021/acsami.7b03802
10.1088/0031-9155/51/13/R03
10.7150/thno.22172
10.1063/1.4890105
10.4155/tde.12.147
10.1002/smll.201201765
10.1155/2012/751075
10.1021/acsami.5b03067
10.1038/nbt.3330
10.1002/adma.201602111
10.1021/nl504044p
10.1021/acsnano.8b02038
10.1038/nphoton.2015.216
10.1039/C4CS00392F
10.1038/nmat3908
10.3322/caac.20114
10.3390/cancers6031670
10.1126/science.aaa8172
10.1211/jpp.60.8.0005
10.1021/acs.chemmater.8b00565
10.1038/nphoton.2015.82
10.1021/acs.chemrev.5b00148
10.1021/acsomega.8b00227
10.1039/C7NR05233B
10.1021/acs.analchem.8b01315
10.1002/adfm.201707140
10.1006/gyno.1996.0075
10.1016/j.colsurfb.2015.11.063
10.1002/adma.201300081
10.1039/C4CS00532E
10.1016/j.biomaterials.2017.01.001
10.1021/acsami.6b15183
10.1016/j.biomaterials.2018.01.047
10.3322/caac.21358
10.1118/1.3457332
10.1002/adfm.201703535
10.1039/c2jm34950g
10.1021/acsnano.5b07473
10.1002/smll.201803156
10.1002/adfm.201802159
10.1016/S0360-3016(97)00372-6
10.3390/nano8060401
10.1021/jacs.8b00368
10.1039/C8CC04653K
10.1002/smll.201500735
10.1002/adfm.201704623
10.1021/acsami.8b03660
10.1021/ar100129p
10.1111/jace.12788
10.1166/jnn.2012.6160
10.1186/s12951-018-0344-3
10.1021/acs.chemrev.5b00091
10.1002/adma.201801743
10.1021/ar7000815
10.1016/j.biopha.2018.08.074
10.1038/nrc3958
10.1021/acs.nanolett.7b04741
10.1021/acs.jpcb.5b01752
10.1016/0003-9861(91)90224-7
10.1039/C8TB00893K
10.1007/s12274-016-1205-8
10.1021/acsnano.8b01508
10.1021/ja404985w
10.1039/C7NR02213A
10.1103/PhysRevB.70.045313
10.1007/s12030-008-9009-x
10.1021/acsnano.7b04230
10.1021/cr400425h
10.1021/acs.chemmater.8b03587
10.3109/02656736.2015.1005178
10.1039/c2cc37169c
10.1016/j.jinorgbio.2014.12.016
10.1002/ange.201812272
10.1039/C3CC48661C
10.1002/adma.201504617
10.1152/physrev.00029.2006
10.1002/adma.201606681
10.1021/acsnano.6b06067
10.1039/C7NR02926H
10.1021/acs.inorgchem.5b02282
10.2147/IJN.S137833
10.1002/adma.201603997
10.1016/j.niox.2008.04.015
10.1021/acsami.7b11295
10.1002/adma.201707634
10.1021/acsnano.9b01818
10.1021/acsnano.7b01346
10.1166/jnn.2006.327
10.1002/hlca.19960790428
10.1039/C6CS00271D
10.1039/c4nr01826e
10.1039/c0pp00265h
10.1021/acsnano.7b08103
10.1021/acsami.7b13920
10.1002/adhm.201800643
10.1016/j.addr.2008.08.004
10.1021/nn503973z
10.1038/s41586-018-0451-1
10.1038/nrc.2018.6
10.1016/j.tips.2017.11.003
10.1021/acs.nanolett.8b02639
10.1002/smll.200902408
10.1088/0957-0233/17/4/R01
10.1021/acs.nanolett.8b02720
10.1002/anie.201802351
10.1021/acsnano.7b04737
10.1021/acsnano.7b01032
10.1039/C7DT01919J
10.1002/adma.201506428
10.1039/C7NR04684G
10.1038/nature10673
10.1021/acsnano.6b01401
10.1002/adfm.201707496
10.1002/pssb.200844039
10.1039/C8PY00192H
10.1002/adfm.201701388
10.7150/thno.27351
10.1002/anie.201700919
10.1039/C2CS15261D
10.1021/jacs.8b05817
10.1166/jbn.2018.2553
10.1021/acs.chemrev.5b00008
10.1016/j.ccell.2015.03.001
10.1002/anie.201707819
10.1039/C1CS15187H
10.1021/la302357h
10.1002/anie.201504536
10.1038/nrd2222
10.1038/nphoton.2014.166
10.1021/acs.inorgchem.7b00240
10.1038/nrc3239
10.1039/C4TB01340A
10.1002/adma.201603114
10.2217/nnm.14.55
10.1002/jbio.201100062
10.1021/ja500671h
10.1007/978-3-642-57920-2
10.1021/acsnano.7b03037
10.1039/C8CS00234G
10.1021/acsnano.5b04606
10.1021/ja508679h
10.1021/acsnano.8b06483
10.1002/anie.201800594
10.1002/adma.201804046
10.1016/j.biomaterials.2018.10.016
10.1021/bc3002985
10.1039/C6NR09553D
10.1021/acs.chemrev.7b00568
10.1039/C7NR06405E
10.1002/adma.201100919
10.1039/C8NR06867D
10.1002/adfm.201603845
10.1002/anie.201408472
10.1002/adfm.201601341
10.1002/adfm.201604382
10.2147/IJN.S164967
10.1021/jp4077189
10.1038/sj.cr.7290133
10.1002/adma.201700996
10.1039/C5CC08682E
10.1002/anie.201704828
10.1002/smll.201602869
10.1021/acsnano.8b03590
10.1021/acsami.8b11507
10.1021/acsami.8b00015
10.7150/thno.7193
10.1007/978-3-319-78004-7
10.1039/C7NR02384G
10.1039/C8TB01398E
10.1016/j.drudis.2015.05.009
10.1021/cr200358s
10.1016/j.ijrobp.2008.06.1916
10.1063/1.3589366
10.1021/jacs.6b05302
10.1021/nl080496z
10.1364/OL.35.003345
10.1021/cm404044n
10.1016/j.colcom.2018.01.004
10.1021/acs.nanolett.7b03813
10.1021/ja405196f
10.1038/s41467-019-09158-1
10.1038/s41467-018-06655-7
10.1038/s41551-018-0203-4
10.1002/adma.201606134
10.1088/0022-3727/45/26/263001
10.1002/anie.201802865
10.1021/acsnano.5b05825
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
DOI 10.1039/c8cs00921j
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
CrossRef
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 311
ExternalDocumentID 31106315
10_1039_C8CS00921J
c8cs00921j
Genre Journal Article
Review
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29B
2WC
4.4
53G
5GY
6J9
705
70~
7~J
85S
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
COF
CS3
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
~02
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c436t-f82c734896114502c95aa9cc4ce75d62c3a39dfb2b20842bf93f34f7ff8a8cfa3
ISSN 0306-0012
1460-4744
IngestDate Fri Jul 11 12:42:22 EDT 2025
Fri Jul 11 01:53:54 EDT 2025
Sun Jun 29 16:13:54 EDT 2025
Thu Apr 03 07:00:23 EDT 2025
Thu Apr 24 23:03:03 EDT 2025
Tue Jul 01 04:18:42 EDT 2025
Tue Dec 17 21:00:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c436t-f82c734896114502c95aa9cc4ce75d62c3a39dfb2b20842bf93f34f7ff8a8cfa3
Notes Xiaoyuan (Shawn) Chen received his PhD in chemistry from the University of Idaho in 1999. He joined the University of Southern California as an Assistant Professor of Radiology in 2002. He then moved to Stanford University in 2004 and was promoted to Associate Professor in 2008. In 2009, he joined the Intramural Research Program of the NIBIB/NIH as a Senior Investigator and Chief of the Laboratory of Molecular Imaging and Nanomedicine (LOMIN). He has authored/co-authored over 700 peer-reviewed papers and the total citations exceed 50 000 (H-index: 122). He is also the founding editor of journal Theranostics.
Jibin Song obtained his PhD degree in Chemical and Biomedical Engineering at Nanyang Technological University, Singapore, in 2014. He then worked with Prof. Xiaoyuan (Shawn) Chen as a postdoctoral fellow at National Institutes of Health (NIH). After finish the postdoctoral training, he joined the Fuzhou University as a "Min Jiang Scholar" Professor of analytical chemistry. Prof. Song has published over 50 papers in high impact journals. His research focuses on developing molecular imaging nanoprobes for bioimaging, biosensing and drug/gene delivery.
Xiaofeng Chen received his bachelor's degree from Fuzhou University in June 2016. Now he is persuing his doctor degree under the supervision of Prof. Huanghao Yang. His research mainly focuses on design, synthesis and biomedical applications of luminescence materials.
Huanghao Yang is a fellow of the Royal Society of Chemistry, who received his PhD from Xiamen University in 2002 and engaged in postdoctoral research at Hong Kong University of Science and Technology (2002-2004). He joined Fuzhou University in 2008 as a Min Jiang Scholar Professor. He has been supported by the National Science Foundation for Distinguished Young Scholars of China in 2011 and the National Award for the Chang Jiang Scholar Program in 2012. Prof. Yang's research interests mostly focus on nanotechnology, bioanalysis and cancer therapy. He has authored/co-authored over 250 peer-reviewed papers and the total citations exceed 13 700 (H-index of 60).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4771-5006
0000-0001-5894-0909
0000-0002-9622-0870
PMID 31106315
PQID 2234559721
PQPubID 2047503
PageCount 29
ParticipantIDs proquest_journals_2234559721
pubmed_primary_31106315
rsc_primary_c8cs00921j
crossref_primary_10_1039_C8CS00921J
proquest_miscellaneous_2232071824
crossref_citationtrail_10_1039_C8CS00921J
proquest_miscellaneous_2286909679
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190604
PublicationDateYYYYMMDD 2019-06-04
PublicationDate_xml – month: 6
  year: 2019
  text: 20190604
  day: 4
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Rieffel (C8CS00921J-(cit24)/*[position()=1]) 2015; 11
Attaluri (C8CS00921J-(cit164)/*[position()=1]) 2015; 31
Wen (C8CS00921J-(cit118)/*[position()=1]) 2016; 28
Xu (C8CS00921J-(cit119)/*[position()=1]) 2018; 28
Hong (C8CS00921J-(cit130)/*[position()=1]) 2014; 8
Gaikwad (C8CS00921J-(cit202)/*[position()=1]) 2018; 18
Leo (C8CS00921J-(cit45)/*[position()=1]) 1994
Xu (C8CS00921J-(cit204)/*[position()=1]) 2017; 56
Lin (C8CS00921J-(cit80)/*[position()=1]) 2017; 29
Yakunin (C8CS00921J-(cit67)/*[position()=1]) 2015; 9
Espinoza (C8CS00921J-(cit54)/*[position()=1]) 2018; 10
Osakada (C8CS00921J-(cit46)/*[position()=1]) 2013; 49
Behmand (C8CS00921J-(cit94)/*[position()=1]) 2015; 119
Spirou (C8CS00921J-(cit167)/*[position()=1]) 2018; 8
Trojan-Piegza (C8CS00921J-(cit52)/*[position()=1]) 2014; 97
Carpenter (C8CS00921J-(cit53)/*[position()=1]) 2010; 37
Liu (C8CS00921J-(cit156)/*[position()=1]) 2017; 121
Yu (C8CS00921J-(cit39)/*[position()=1]) 2019; 131
Lin (C8CS00921J-(cit92)/*[position()=1]) 2018; 54
Blanco (C8CS00921J-(cit154)/*[position()=1]) 2015; 33
Sham (C8CS00921J-(cit35)/*[position()=1]) 2004; 70
Yong (C8CS00921J-(cit174)/*[position()=1]) 2015; 9
Diagaradjane (C8CS00921J-(cit168)/*[position()=1]) 2008; 8
Hu (C8CS00921J-(cit201)/*[position()=1]) 2018; 18
Kirakci (C8CS00921J-(cit100)/*[position()=1]) 2018; 6
Huo (C8CS00921J-(cit192)/*[position()=1]) 2017; 11
Lusic (C8CS00921J-(cit1)/*[position()=1]) 2013; 113
Lu (C8CS00921J-(cit103)/*[position()=1]) 2014; 136
Valais (C8CS00921J-(cit63)/*[position()=1]) 2015; 637
Sun (C8CS00921J-(cit26)/*[position()=1]) 2011; 23
Mao (C8CS00921J-(cit165)/*[position()=1]) 2016; 10
Liu (C8CS00921J-(cit175)/*[position()=1]) 2017; 9
Yu (C8CS00921J-(cit90)/*[position()=1]) 2018; 7
Nikl (C8CS00921J-(cit34)/*[position()=1]) 2006; 17
Wang (C8CS00921J-(cit42)/*[position()=1]) 2019
Kobayashi (C8CS00921J-(cit194)/*[position()=1]) 2013; 4
Lu (C8CS00921J-(cit191)/*[position()=1]) 2018; 2
Jiang (C8CS00921J-(cit122)/*[position()=1]) 2018; 12
Radi (C8CS00921J-(cit145)/*[position()=1]) 1991; 288
Rajaee (C8CS00921J-(cit171)/*[position()=1]) 2018; 14
Du (C8CS00921J-(cit178)/*[position()=1]) 2017; 29
Santin (C8CS00921J-(cit182)/*[position()=1]) 1997; 39
Spirou (C8CS00921J-(cit170)/*[position()=1]) 2018; 8
Takahashi (C8CS00921J-(cit32)/*[position()=1]) 2008; 3
Lin (C8CS00921J-(cit76)/*[position()=1]) 2017; 9
Du (C8CS00921J-(cit173)/*[position()=1]) 2017; 9
Li (C8CS00921J-(cit28)/*[position()=1]) 2017; 10
Ma (C8CS00921J-(cit74)/*[position()=1]) 2014; 105
Kang (C8CS00921J-(cit61)/*[position()=1]) 2011; 98
Wang (C8CS00921J-(cit6)/*[position()=1]) 2018; 39
Dou (C8CS00921J-(cit82)/*[position()=1]) 2016; 10
He (C8CS00921J-(cit104)/*[position()=1]) 2015; 115
Zhang (C8CS00921J-(cit139)/*[position()=1]) 2012; 28
Yang (C8CS00921J-(cit89)/*[position()=1]) 2017; 11
Li (C8CS00921J-(cit198)/*[position()=1]) 2018; 28
Xie (C8CS00921J-(cit111)/*[position()=1]) 2017; 56
Tsvirkun (C8CS00921J-(cit200)/*[position()=1]) 2018; 140
Pacher (C8CS00921J-(cit144)/*[position()=1]) 2007; 87
Chanmee (C8CS00921J-(cit180)/*[position()=1]) 2014; 6
Osakada (C8CS00921J-(cit81)/*[position()=1]) 2014; 50
Liu (C8CS00921J-(cit112)/*[position()=1]) 2018; 8
Juzenas (C8CS00921J-(cit10)/*[position()=1]) 2008; 60
Santin (C8CS00921J-(cit183)/*[position()=1]) 1996; 60
GarciaFresnadillo (C8CS00921J-(cit109)/*[position()=1]) 1996; 79
Miller (C8CS00921J-(cit153)/*[position()=1]) 2013; 4
Song (C8CS00921J-(cit7)/*[position()=1]) 2017; 29
Kirakci (C8CS00921J-(cit36)/*[position()=1]) 2016; 55
Xu (C8CS00921J-(cit58)/*[position()=1]) 2016; 116
Chen (C8CS00921J-(cit132)/*[position()=1]) 2006; 6
Fan (C8CS00921J-(cit149)/*[position()=1]) 2015; 54
Zhang (C8CS00921J-(cit25)/*[position()=1]) 2017; 9
Clement (C8CS00921J-(cit16)/*[position()=1]) 2018; 13
Nikl (C8CS00921J-(cit31)/*[position()=1]) 2008; 245
Guo (C8CS00921J-(cit4)/*[position()=1]) 2018
Zhou (C8CS00921J-(cit11)/*[position()=1]) 2018; 57
Song (C8CS00921J-(cit185)/*[position()=1]) 2018; 18
Kamkaew (C8CS00921J-(cit29)/*[position()=1]) 2016; 10
Ding (C8CS00921J-(cit43)/*[position()=1]) 2018; 9
Chen (C8CS00921J-(cit176)/*[position()=1]) 2017; 34
Agostinis (C8CS00921J-(cit127)/*[position()=1]) 2011; 61
Moeller (C8CS00921J-(cit113)/*[position()=1]) 2007; 26
Dou (C8CS00921J-(cit20)/*[position()=1]) 2018; 8
Huang (C8CS00921J-(cit91)/*[position()=1]) 2017; 27
Wang (C8CS00921J-(cit50)/*[position()=1]) 2011; 44
Zhang (C8CS00921J-(cit70)/*[position()=1]) 2017; 27
Jin (C8CS00921J-(cit115)/*[position()=1]) 2007; 28
Ngwa (C8CS00921J-(cit189)/*[position()=1]) 2018; 18
Topalian (C8CS00921J-(cit186)/*[position()=1]) 2015; 27
Attia (C8CS00921J-(cit44)/*[position()=1]) 2014; 8
Weiming (C8CS00921J-(cit142)/*[position()=1]) 2002; 12
Yu (C8CS00921J-(cit17)/*[position()=1]) 2017; 11
Ferrer-Sueta (C8CS00921J-(cit143)/*[position()=1]) 2018; 118
Lu (C8CS00921J-(cit123)/*[position()=1]) 2018; 12
Wang (C8CS00921J-(cit138)/*[position()=1]) 2018; 12
Lan (C8CS00921J-(cit106)/*[position()=1]) 2018; 140
Graves (C8CS00921J-(cit137)/*[position()=1]) 2012; 45
Guidelli (C8CS00921J-(cit65)/*[position()=1]) 2018; 30
Nam (C8CS00921J-(cit95)/*[position()=1]) 2016; 138
Chen (C8CS00921J-(cit157)/*[position()=1]) 2017; 13
Bulin (C8CS00921J-(cit15)/*[position()=1]) 2013; 117
Wang (C8CS00921J-(cit160)/*[position()=1]) 2018; 28
Pan (C8CS00921J-(cit114)/*[position()=1]) 2018; 23
Barker (C8CS00921J-(cit116)/*[position()=1]) 2015; 15
Jiang (C8CS00921J-(cit216)/*[position()=1]) 2017; 11
Tang (C8CS00921J-(cit133)/*[position()=1]) 2015; 7
Patel (C8CS00921J-(cit184)/*[position()=1]) 2018; 3
Krasilnikova (C8CS00921J-(cit97)/*[position()=1]) 2015; 144
Wang (C8CS00921J-(cit177)/*[position()=1]) 2016; 26
Cui (C8CS00921J-(cit214)/*[position()=1]) 2018; 140
Deng (C8CS00921J-(cit22)/*[position()=1]) 2018; 10
Nikl (C8CS00921J-(cit33)/*[position()=1]) 2015; 3
Chen (C8CS00921J-(cit37)/*[position()=1]) 2018; 561
Kalender (C8CS00921J-(cit21)/*[position()=1]) 2006; 51
Wu (C8CS00921J-(cit102)/*[position()=1]) 2017; 29
Wolfbeis (C8CS00921J-(cit207)/*[position()=1]) 2015; 44
Garnett (C8CS00921J-(cit181)/*[position()=1]) 2004; 64
Xiao (C8CS00921J-(cit169)/*[position()=1]) 2013; 135
Hou (C8CS00921J-(cit128)/*[position()=1]) 2015; 9
Yu (C8CS00921J-(cit83)/*[position()=1]) 2018; 161
Yong (C8CS00921J-(cit93)/*[position()=1]) 2017; 11
Pardoll (C8CS00921J-(cit188)/*[position()=1]) 2012; 12
Lu (C8CS00921J-(cit101)/*[position()=1]) 2018; 30
Herrera (C8CS00921J-(cit5)/*[position()=1]) 2017; 67
Zhang (C8CS00921J-(cit125)/*[position()=1]) 2019; 19
Chen (C8CS00921J-(cit19)/*[position()=1]) 2015; 15
Martynenko (C8CS00921J-(cit59)/*[position()=1]) 2017; 5
Kirakci (C8CS00921J-(cit99)/*[position()=1]) 2017; 56
Wang (C8CS00921J-(cit49)/*[position()=1]) 2014; 47
Wang (C8CS00921J-(cit147)/*[position()=1]) 2002; 102
Zhang (C8CS00921J-(cit85)/*[position()=1]) 2018; 107
Xue (C8CS00921J-(cit73)/*[position()=1]) 2017; 9
Fan (C8CS00921J-(cit148)/*[position()=1]) 2018; 57
Takizawa (C8CS00921J-(cit108)/*[position()=1]) 2011; 10
Conde (C8CS00921J-(cit77)/*[position()=1]) 2012; 2012
Evtushok (C8CS00921J-(cit98)/*[position()=1]) 2017; 46
Zhang (C8CS00921J-(cit195)/*[position()=1]) 2012; 12
Tu (C8CS00921J-(cit48)/*[position()=1]) 2014; 273
Jaque (C8CS00921J-(cit166)/*[position()=1]) 2014; 6
Liu (C8CS00921J-(cit159)/*[position()=1]) 2018; 6
Dong (C8CS00921J-(cit47)/*[position()=1]) 2015; 115
Song (C8CS00921J-(cit75)/*[position()=1]) 2017; 9
Tanabe (C8CS00921J-(cit12)/*[position()=1]) 2012; 23
Meng (C8CS00921J-(cit13)/*[position()=1]) 2018; 12
Fan (C8CS00921J-(cit126)/*[position()=1]) 2016; 45
Lan (C8CS00921J-(cit107)/*[position()=1]) 2017; 56
Chang (C8CS00921J-(cit88)/*[position()=1]) 2017; 11
Szabo (C8CS00921J-(cit141)/*[position()=1]) 2007; 6
Naczynski (C8CS00921J-(cit27)/*[position()=1]) 2015; 15
Shi (C8CS00921J-(cit51)/*[position()=1]) 2012; 22
De Ridder (C8CS00921J-(cit146)/*[position()=1]) 2008; 19
Sharma (C8CS00921J-(cit79)/*[position()=1]) 2015; 20
Low (C8CS00921J-(cit196)/*[position()=1]) 2007; 41
Ngwa (C8CS00921J-(cit78)/*[position()=1]) 2014; 9
Ni (C8CS00921J-(cit18)/*[position()=1]) 2018; 9
Yang (C8CS00921J-(cit62)/*[position()=1]) 2008; 72
Cheng (C8CS00921J-(cit23)/*[position()=1]) 2015; 9
Fan (C8CS00921J-(cit124)/*[position()=1]) 2019; 10
Zhang (C8CS00921J-(cit136)/*[position()=1]) 2015; 54
Wang (C8CS00921J-(cit105)/*[position()=1]) 2014; 136
Ou (C8CS00921J-(cit55)/*[position()=1]) 2018; 90
Cheng (C8CS00921J-(cit41)/*[position()=1]) 2018; 12
Hong (C8CS00921J-(cit205)/*[position()=1]) 2015; 115
Büchele (C8CS00921J-(cit68)/*[position()=1]) 2015; 9
Liu (C8CS00921J-(cit150)/*[position()=1]) 2017; 9
Liu (C8CS00921J-(cit158)/*[position()=1]) 2017; 27
Song (C8CS00921J-(cit117)/*[position()=1]) 2016; 26
Yang (C8CS00921J-(cit162)/*[position()=1]) 2013; 9
Wang (C8CS00921J-(cit71)/*[position()=1]) 2018; 14
Ni (C8CS00921J-(cit193)/*[position()=1]) 2018; 9
Padilla (C8CS00921J-(cit96)/*[position()=1]) 2016; 52
Bi (C8CS00921J-(cit84)/*[position()=1]) 2018; 30
Meng (C8CS00921J-(cit163)/*[position()=1]) 2012; 28
Liu (C8CS00921J-(cit64)/*[position()=1]) 2010; 6
Wei (C8CS00921J-(cit69)/*[position()=1]) 2017; 27
Hsu (C8CS00921J-(cit135)/*[position()=1]) 2018; 10
Maldiney (C8CS00921J-(cit72)/*[position()=1]) 2014; 13
Zhang (C8CS00921J-(cit155)/*[position()=1]) 2017; 138
Mellman (C8CS00921J-(cit179)/*[position()=1]) 2011; 480
Wang (C8CS00921J-(cit110)/*[position()=1]) 2018; 57
Sengar (C8CS00921J-(cit134)/*[position()=1]) 2018; 16
Song (C8CS00921J-(cit8)/*[position()=1]) 2016; 28
Pratx (C8CS00921J-(cit210)/*[position()=1]) 2010; 35
Guo (C8CS00921J-(cit38)/*[position()=1]) 2018; 10
Sharma (C8CS00921J-(cit187)/*[position()=1]) 2015; 348
Chen (C8CS00921J-(cit208)/*[position()=1]) 2014; 114
Sudheendra (C8CS00921J-(cit56)/*[position()=1]) 2014; 26
Yi (C8CS00921J-(cit121)/*[position()=1]) 2016; 9
Pratx (C8CS00921J-(cit211)/*[position()=1]) 2010; 29
Katz (C8CS00921J-(cit190)/*[position()=1]) 2008; 222
Wang (C8CS00921J-(cit129)/*[position()=1]) 2014; 6
Yu (C8CS00921J-(cit87)/*[position()=1]) 2016; 139
Song (C8CS00921J-(cit9)/*[position()=1]) 2016; 28
Wegner (C8CS00921J-(cit60)/*[position()=1]) 2015; 44
Lee (C8CS00921J-(cit213)/*[position()=1]) 2012; 41
Yao (C8CS00921J-(cit57)/*[position()=1]) 2017; 9
Heo (C8CS00921J-(c
References_xml – issn: 2018
  publication-title: X-ray Nanochemistry: Concepts and Development
  doi: Guo
– issn: 1994
  publication-title: Techniques for Nuclear and Particle Physics Pxperiments: a How-to Approach
  doi: Leo
– volume: 9
  start-page: 2351
  year: 2018
  ident: C8CS00921J-(cit18)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04703-w
– volume: 5
  start-page: 6701
  year: 2017
  ident: C8CS00921J-(cit59)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB01425B
– volume: 27
  start-page: 1703832
  year: 2017
  ident: C8CS00921J-(cit158)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201703832
– volume: 64
  start-page: 7985
  year: 2004
  ident: C8CS00921J-(cit181)/*[position()=1]
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-04-1525
– volume: 637
  start-page: 012031
  year: 2015
  ident: C8CS00921J-(cit63)/*[position()=1]
  publication-title: J. Phys.: Conf. Ser.
– volume: 26
  start-page: 241
  year: 2007
  ident: C8CS00921J-(cit113)/*[position()=1]
  publication-title: Cancer Metastasis Rev.
  doi: 10.1007/s10555-007-9056-0
– volume: 102
  start-page: 1091
  year: 2002
  ident: C8CS00921J-(cit147)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr000040l
– volume: 28
  start-page: 3724
  year: 2007
  ident: C8CS00921J-(cit115)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.04.032
– volume: 6
  start-page: 9494
  year: 2014
  ident: C8CS00921J-(cit166)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR00708E
– volume: 11
  start-page: 3990
  year: 2017
  ident: C8CS00921J-(cit17)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00476
– volume: 8
  start-page: 306
  year: 2018
  ident: C8CS00921J-(cit170)/*[position()=1]
  publication-title: Nanomaterials
  doi: 10.3390/nano8050306
– volume: 138
  start-page: 13
  year: 2017
  ident: C8CS00921J-(cit155)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.05.025
– volume: 34
  start-page: 1604155
  year: 2017
  ident: C8CS00921J-(cit176)/*[position()=1]
  publication-title: Part. Part. Syst. Charact.
– volume: 116
  start-page: 12234
  year: 2016
  ident: C8CS00921J-(cit58)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00290
– volume: 15
  start-page: 96
  year: 2015
  ident: C8CS00921J-(cit27)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl504123r
– volume: 11
  start-page: 5860
  year: 2015
  ident: C8CS00921J-(cit3)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201501923
– volume: 47
  start-page: 1378
  year: 2014
  ident: C8CS00921J-(cit49)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar5000067
– volume: 222
  start-page: 206
  year: 2008
  ident: C8CS00921J-(cit190)/*[position()=1]
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2008.00610.x
– volume: 12
  start-page: 3796
  year: 2018
  ident: C8CS00921J-(cit138)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01010
– volume: 273
  start-page: 13
  year: 2014
  ident: C8CS00921J-(cit48)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2013.11.017
– volume: 115
  start-page: 11079
  year: 2015
  ident: C8CS00921J-(cit104)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00125
– volume: 140
  start-page: 16971
  year: 2018
  ident: C8CS00921J-(cit106)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11593
– volume: 19
  start-page: 1749
  year: 2019
  ident: C8CS00921J-(cit125)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04763
– volume: 29
  start-page: 1701268
  year: 2017
  ident: C8CS00921J-(cit178)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701268
– volume: 3
  start-page: 463
  year: 2015
  ident: C8CS00921J-(cit33)/*[position()=1]
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201400571
– volume: 29
  start-page: 1992
  year: 2010
  ident: C8CS00921J-(cit211)/*[position()=1]
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2055883
– volume: 9
  start-page: 2584
  year: 2015
  ident: C8CS00921J-(cit128)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn506107c
– volume: 45
  start-page: 6488
  year: 2016
  ident: C8CS00921J-(cit126)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00616G
– volume: 9
  start-page: 22132
  year: 2017
  ident: C8CS00921J-(cit73)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b03802
– volume: 51
  start-page: R29
  year: 2006
  ident: C8CS00921J-(cit21)/*[position()=1]
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/51/13/R03
– volume: 8
  start-page: 1824
  year: 2018
  ident: C8CS00921J-(cit112)/*[position()=1]
  publication-title: Theranostics
  doi: 10.7150/thno.22172
– volume: 105
  start-page: 013702
  year: 2014
  ident: C8CS00921J-(cit74)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4890105
– volume: 4
  start-page: 239
  year: 2013
  ident: C8CS00921J-(cit153)/*[position()=1]
  publication-title: Ther. Delivery
  doi: 10.4155/tde.12.147
– volume: 9
  start-page: 2937
  year: 2013
  ident: C8CS00921J-(cit162)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201201765
– volume: 2012
  start-page: 751075
  year: 2012
  ident: C8CS00921J-(cit77)/*[position()=1]
  publication-title: J. Drug Delivery
  doi: 10.1155/2012/751075
– volume: 7
  start-page: 12261
  year: 2015
  ident: C8CS00921J-(cit133)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03067
– volume: 33
  start-page: 941
  year: 2015
  ident: C8CS00921J-(cit154)/*[position()=1]
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3330
– volume: 28
  start-page: 7143
  year: 2016
  ident: C8CS00921J-(cit8)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602111
– volume: 15
  start-page: 2249
  year: 2015
  ident: C8CS00921J-(cit19)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl504044p
– volume: 12
  start-page: 4946
  year: 2018
  ident: C8CS00921J-(cit41)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02038
– volume: 9
  start-page: 843
  year: 2015
  ident: C8CS00921J-(cit68)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.216
– volume: 44
  start-page: 4743
  year: 2015
  ident: C8CS00921J-(cit207)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00392F
– volume: 13
  start-page: 418
  year: 2014
  ident: C8CS00921J-(cit72)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3908
– volume: 61
  start-page: 250
  year: 2011
  ident: C8CS00921J-(cit127)/*[position()=1]
  publication-title: Ca-Cancer J. Clin.
  doi: 10.3322/caac.20114
– volume: 6
  start-page: 1670
  year: 2014
  ident: C8CS00921J-(cit180)/*[position()=1]
  publication-title: Cancer
  doi: 10.3390/cancers6031670
– volume: 348
  start-page: 56
  year: 2015
  ident: C8CS00921J-(cit187)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaa8172
– volume: 60
  start-page: 977
  year: 2008
  ident: C8CS00921J-(cit30)/*[position()=1]
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1211/jpp.60.8.0005
– volume: 30
  start-page: 3301
  year: 2018
  ident: C8CS00921J-(cit84)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b00565
– volume: 9
  start-page: 444
  year: 2015
  ident: C8CS00921J-(cit67)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.82
– volume: 116
  start-page: 2826
  year: 2016
  ident: C8CS00921J-(cit212)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00148
– volume: 3
  start-page: 3702
  year: 2018
  ident: C8CS00921J-(cit184)/*[position()=1]
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b00227
– volume: 9
  start-page: 13364
  year: 2017
  ident: C8CS00921J-(cit57)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR05233B
– volume: 90
  start-page: 6992
  year: 2018
  ident: C8CS00921J-(cit55)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b01315
– volume: 28
  start-page: 1707140
  year: 2018
  ident: C8CS00921J-(cit119)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201707140
– volume: 60
  start-page: 468
  year: 1996
  ident: C8CS00921J-(cit183)/*[position()=1]
  publication-title: Gynecol. Oncol.
  doi: 10.1006/gyno.1996.0075
– volume: 139
  start-page: 180
  year: 2016
  ident: C8CS00921J-(cit87)/*[position()=1]
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2015.11.063
– volume: 25
  start-page: 2641
  year: 2013
  ident: C8CS00921J-(cit2)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300081
– volume: 44
  start-page: 4792
  year: 2015
  ident: C8CS00921J-(cit60)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00532E
– volume: 121
  start-page: 130
  year: 2017
  ident: C8CS00921J-(cit156)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.01.001
– volume: 9
  start-page: 279
  year: 2017
  ident: C8CS00921J-(cit175)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15183
– volume: 161
  start-page: 279
  year: 2018
  ident: C8CS00921J-(cit83)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.01.047
– volume: 67
  start-page: 65
  year: 2017
  ident: C8CS00921J-(cit5)/*[position()=1]
  publication-title: Ca-Cancer J. Clin.
  doi: 10.3322/caac.21358
– volume: 37
  start-page: 4011
  year: 2010
  ident: C8CS00921J-(cit53)/*[position()=1]
  publication-title: Med. Phys.
  doi: 10.1118/1.3457332
– volume: 27
  start-page: 1703535
  year: 2017
  ident: C8CS00921J-(cit69)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201703535
– volume: 22
  start-page: 23461
  year: 2012
  ident: C8CS00921J-(cit51)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm34950g
– volume: 10
  start-page: 2536
  year: 2016
  ident: C8CS00921J-(cit82)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07473
– volume: 14
  start-page: 1803156
  year: 2018
  ident: C8CS00921J-(cit71)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201803156
– volume: 28
  start-page: 1802159
  year: 2018
  ident: C8CS00921J-(cit160)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802159
– volume: 39
  start-page: 737
  year: 1997
  ident: C8CS00921J-(cit182)/*[position()=1]
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
  doi: 10.1016/S0360-3016(97)00372-6
– volume: 8
  start-page: 401
  year: 2018
  ident: C8CS00921J-(cit167)/*[position()=1]
  publication-title: Nanomaterials
  doi: 10.3390/nano8060401
– volume: 140
  start-page: 5890
  year: 2018
  ident: C8CS00921J-(cit214)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00368
– volume: 54
  start-page: 8579
  year: 2018
  ident: C8CS00921J-(cit92)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC04653K
– volume: 11
  start-page: 4445
  year: 2015
  ident: C8CS00921J-(cit24)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201500735
– volume: 28
  start-page: 1704623
  year: 2018
  ident: C8CS00921J-(cit198)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704623
– volume: 10
  start-page: 17071
  year: 2018
  ident: C8CS00921J-(cit152)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b03660
– volume: 44
  start-page: 322
  year: 2011
  ident: C8CS00921J-(cit50)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar100129p
– volume: 97
  start-page: 1595
  year: 2014
  ident: C8CS00921J-(cit52)/*[position()=1]
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.12788
– volume: 12
  start-page: 4012
  year: 2012
  ident: C8CS00921J-(cit195)/*[position()=1]
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2012.6160
– volume: 16
  start-page: 19
  year: 2018
  ident: C8CS00921J-(cit134)/*[position()=1]
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-018-0344-3
– volume: 115
  start-page: 10725
  year: 2015
  ident: C8CS00921J-(cit47)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00091
– volume: 30
  start-page: 1801743
  year: 2018
  ident: C8CS00921J-(cit66)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801743
– volume: 41
  start-page: 120
  year: 2007
  ident: C8CS00921J-(cit196)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar7000815
– volume: 107
  start-page: 1135
  year: 2018
  ident: C8CS00921J-(cit85)/*[position()=1]
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2018.08.074
– volume: 15
  start-page: 409
  year: 2015
  ident: C8CS00921J-(cit116)/*[position()=1]
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3958
– volume: 18
  start-page: 1196
  year: 2018
  ident: C8CS00921J-(cit201)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b04741
– volume: 119
  start-page: 9496
  year: 2015
  ident: C8CS00921J-(cit94)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.5b01752
– volume: 288
  start-page: 481
  year: 1991
  ident: C8CS00921J-(cit145)/*[position()=1]
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(91)90224-7
– volume: 6
  start-page: 4301
  year: 2018
  ident: C8CS00921J-(cit100)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB00893K
– volume: 9
  start-page: 3267
  year: 2016
  ident: C8CS00921J-(cit121)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1205-8
– volume: 12
  start-page: 5684
  year: 2018
  ident: C8CS00921J-(cit122)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01508
– volume: 135
  start-page: 13041
  year: 2013
  ident: C8CS00921J-(cit169)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja404985w
– volume: 9
  start-page: 8229
  year: 2017
  ident: C8CS00921J-(cit173)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR02213A
– volume: 70
  start-page: 045313
  year: 2004
  ident: C8CS00921J-(cit35)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.70.045313
– volume: 3
  start-page: 116
  year: 2008
  ident: C8CS00921J-(cit32)/*[position()=1]
  publication-title: Nanobiotechnology
  doi: 10.1007/s12030-008-9009-x
– volume: 11
  start-page: 10012
  year: 2017
  ident: C8CS00921J-(cit89)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b04230
– volume: 114
  start-page: 5161
  year: 2014
  ident: C8CS00921J-(cit208)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr400425h
– volume: 30
  start-page: 8562
  year: 2018
  ident: C8CS00921J-(cit65)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03587
– volume: 28
  start-page: 319
  year: 2012
  ident: C8CS00921J-(cit163)/*[position()=1]
  publication-title: Chem. Res. Chin. Univ.
– volume: 31
  start-page: 359
  year: 2015
  ident: C8CS00921J-(cit164)/*[position()=1]
  publication-title: Int. J. Hyperthermia
  doi: 10.3109/02656736.2015.1005178
– volume: 49
  start-page: 4319
  year: 2013
  ident: C8CS00921J-(cit46)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc37169c
– volume: 144
  start-page: 13
  year: 2015
  ident: C8CS00921J-(cit97)/*[position()=1]
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2014.12.016
– volume: 131
  start-page: 2039
  year: 2019
  ident: C8CS00921J-(cit39)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201812272
– volume: 50
  start-page: 3549
  year: 2014
  ident: C8CS00921J-(cit81)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C3CC48661C
– volume: 28
  start-page: 2716
  year: 2016
  ident: C8CS00921J-(cit9)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504617
– volume: 87
  start-page: 315
  year: 2007
  ident: C8CS00921J-(cit144)/*[position()=1]
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00029.2006
– volume: 29
  start-page: 1606681
  year: 2017
  ident: C8CS00921J-(cit80)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606681
– volume: 10
  start-page: 11145
  year: 2016
  ident: C8CS00921J-(cit165)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b06067
– volume: 10
  start-page: 342
  year: 2017
  ident: C8CS00921J-(cit28)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR02926H
– volume: 55
  start-page: 803
  year: 2016
  ident: C8CS00921J-(cit36)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b02282
– volume: 12
  start-page: 5069
  year: 2017
  ident: C8CS00921J-(cit197)/*[position()=1]
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S137833
– volume: 29
  start-page: 1603997
  year: 2017
  ident: C8CS00921J-(cit199)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603997
– volume: 19
  start-page: 164
  year: 2008
  ident: C8CS00921J-(cit146)/*[position()=1]
  publication-title: Nitric oxide
  doi: 10.1016/j.niox.2008.04.015
– volume: 9
  start-page: 39985
  year: 2017
  ident: C8CS00921J-(cit25)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b11295
– volume: 30
  start-page: 1707634
  year: 2018
  ident: C8CS00921J-(cit101)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707634
– year: 2019
  ident: C8CS00921J-(cit42)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b01818
– volume: 11
  start-page: 4848
  year: 2017
  ident: C8CS00921J-(cit88)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01346
– volume: 6
  start-page: 1159
  year: 2006
  ident: C8CS00921J-(cit132)/*[position()=1]
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2006.327
– volume: 79
  start-page: 1222
  year: 1996
  ident: C8CS00921J-(cit109)/*[position()=1]
  publication-title: Helv. Chim. Acta
  doi: 10.1002/hlca.19960790428
– volume: 45
  start-page: 6597
  year: 2016
  ident: C8CS00921J-(cit120)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00271D
– volume: 6
  start-page: 8274
  year: 2014
  ident: C8CS00921J-(cit129)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c4nr01826e
– volume: 10
  start-page: 895
  year: 2011
  ident: C8CS00921J-(cit108)/*[position()=1]
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/c0pp00265h
– volume: 12
  start-page: 1580
  year: 2018
  ident: C8CS00921J-(cit123)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08103
– volume: 9
  start-page: 41181
  year: 2017
  ident: C8CS00921J-(cit76)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b13920
– volume: 7
  start-page: 1800643
  year: 2018
  ident: C8CS00921J-(cit90)/*[position()=1]
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201800643
– volume: 60
  start-page: 1600
  year: 2008
  ident: C8CS00921J-(cit10)/*[position()=1]
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2008.08.004
– volume: 8
  start-page: 10537
  year: 2014
  ident: C8CS00921J-(cit44)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn503973z
– volume: 561
  start-page: 88
  year: 2018
  ident: C8CS00921J-(cit37)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-018-0451-1
– volume: 18
  start-page: 313
  year: 2018
  ident: C8CS00921J-(cit189)/*[position()=1]
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2018.6
– volume: 39
  start-page: 24
  year: 2018
  ident: C8CS00921J-(cit6)/*[position()=1]
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2017.11.003
– volume: 18
  start-page: 6778
  year: 2018
  ident: C8CS00921J-(cit215)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b02639
– volume: 6
  start-page: 1087
  year: 2010
  ident: C8CS00921J-(cit64)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.200902408
– volume: 17
  start-page: R37
  year: 2006
  ident: C8CS00921J-(cit34)/*[position()=1]
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/17/4/R01
– volume: 18
  start-page: 6360
  year: 2018
  ident: C8CS00921J-(cit185)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b02720
– volume: 57
  start-page: 8463
  year: 2018
  ident: C8CS00921J-(cit11)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201802351
– volume: 11
  start-page: 10159
  year: 2017
  ident: C8CS00921J-(cit192)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b04737
– volume: 11
  start-page: 5633
  year: 2017
  ident: C8CS00921J-(cit216)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01032
– volume: 46
  start-page: 11738
  year: 2017
  ident: C8CS00921J-(cit98)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT01919J
– volume: 28
  start-page: 5072
  year: 2016
  ident: C8CS00921J-(cit118)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506428
– volume: 9
  start-page: 14627
  year: 2017
  ident: C8CS00921J-(cit150)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR04684G
– volume: 480
  start-page: 480
  year: 2011
  ident: C8CS00921J-(cit179)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature10673
– volume: 10
  start-page: 3918
  year: 2016
  ident: C8CS00921J-(cit29)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01401
– volume: 28
  start-page: 1707496
  year: 2018
  ident: C8CS00921J-(cit14)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201707496
– volume: 245
  start-page: 1701
  year: 2008
  ident: C8CS00921J-(cit31)/*[position()=1]
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.200844039
– volume: 9
  start-page: 2926
  year: 2018
  ident: C8CS00921J-(cit43)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/C8PY00192H
– volume: 27
  start-page: 1701388
  year: 2017
  ident: C8CS00921J-(cit91)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201701388
– volume: 8
  start-page: 5870
  year: 2018
  ident: C8CS00921J-(cit20)/*[position()=1]
  publication-title: Theranostics
  doi: 10.7150/thno.27351
– volume: 56
  start-page: 7500
  year: 2017
  ident: C8CS00921J-(cit111)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201700919
– volume: 41
  start-page: 2656
  year: 2012
  ident: C8CS00921J-(cit213)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS15261D
– volume: 140
  start-page: 12010
  year: 2018
  ident: C8CS00921J-(cit200)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05817
– volume: 14
  start-page: 1159
  year: 2018
  ident: C8CS00921J-(cit171)/*[position()=1]
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2018.2553
– volume: 115
  start-page: 10816
  year: 2015
  ident: C8CS00921J-(cit205)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00008
– volume: 27
  start-page: 450
  year: 2015
  ident: C8CS00921J-(cit186)/*[position()=1]
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.03.001
– volume: 56
  start-page: 13356
  year: 2017
  ident: C8CS00921J-(cit204)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201707819
– volume: 41
  start-page: 1323
  year: 2012
  ident: C8CS00921J-(cit209)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15187H
– volume: 28
  start-page: 12879
  year: 2012
  ident: C8CS00921J-(cit139)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la302357h
– volume: 54
  start-page: 14026
  year: 2015
  ident: C8CS00921J-(cit149)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201504536
– volume: 6
  start-page: 662
  year: 2007
  ident: C8CS00921J-(cit141)/*[position()=1]
  publication-title: Nat. Rev. Drug Discovery
  doi: 10.1038/nrd2222
– volume: 8
  start-page: 723
  year: 2014
  ident: C8CS00921J-(cit130)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.166
– volume: 56
  start-page: 4610
  year: 2017
  ident: C8CS00921J-(cit99)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b00240
– volume: 12
  start-page: 252
  year: 2012
  ident: C8CS00921J-(cit188)/*[position()=1]
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3239
– volume: 2
  start-page: 7449
  year: 2014
  ident: C8CS00921J-(cit140)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C4TB01340A
– volume: 28
  start-page: 8950
  year: 2016
  ident: C8CS00921J-(cit161)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603114
– volume: 9
  start-page: 1063
  year: 2014
  ident: C8CS00921J-(cit78)/*[position()=1]
  publication-title: Nanomedicine
  doi: 10.2217/nnm.14.55
– volume: 4
  start-page: 773
  year: 2011
  ident: C8CS00921J-(cit131)/*[position()=1]
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201100062
– volume: 136
  start-page: 6171
  year: 2014
  ident: C8CS00921J-(cit105)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja500671h
– volume-title: Techniques for Nuclear and Particle Physics Pxperiments: a How-to Approach
  year: 1994
  ident: C8CS00921J-(cit45)/*[position()=1]
  doi: 10.1007/978-3-642-57920-2
– volume: 11
  start-page: 7164
  year: 2017
  ident: C8CS00921J-(cit93)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03037
– volume: 47
  start-page: 4258
  year: 2018
  ident: C8CS00921J-(cit206)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00234G
– volume: 9
  start-page: 11090
  year: 2015
  ident: C8CS00921J-(cit23)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b04606
– volume: 136
  start-page: 16712
  year: 2014
  ident: C8CS00921J-(cit103)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja508679h
– volume: 12
  start-page: 12401
  year: 2018
  ident: C8CS00921J-(cit86)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06483
– volume: 57
  start-page: 8383
  year: 2018
  ident: C8CS00921J-(cit148)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201800594
– volume: 30
  start-page: 1804046
  year: 2018
  ident: C8CS00921J-(cit151)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804046
– volume: 189
  start-page: 11
  year: 2019
  ident: C8CS00921J-(cit40)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.10.016
– volume: 23
  start-page: 1909
  year: 2012
  ident: C8CS00921J-(cit12)/*[position()=1]
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc3002985
– volume: 9
  start-page: 2718
  year: 2017
  ident: C8CS00921J-(cit75)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR09553D
– volume: 118
  start-page: 1338
  year: 2018
  ident: C8CS00921J-(cit143)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00568
– volume: 10
  start-page: 1607
  year: 2018
  ident: C8CS00921J-(cit38)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR06405E
– volume: 23
  start-page: H195
  year: 2011
  ident: C8CS00921J-(cit26)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100919
– volume: 10
  start-page: 22533
  year: 2018
  ident: C8CS00921J-(cit54)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR06867D
– volume: 26
  start-page: 8243
  year: 2016
  ident: C8CS00921J-(cit117)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201603845
– volume: 54
  start-page: 1770
  year: 2015
  ident: C8CS00921J-(cit136)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201408472
– volume: 26
  start-page: 5335
  year: 2016
  ident: C8CS00921J-(cit177)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601341
– volume: 27
  start-page: 1604382
  year: 2017
  ident: C8CS00921J-(cit70)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604382
– volume: 13
  start-page: 3553
  year: 2018
  ident: C8CS00921J-(cit16)/*[position()=1]
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S164967
– volume: 117
  start-page: 21583
  year: 2013
  ident: C8CS00921J-(cit15)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4077189
– volume: 12
  start-page: 311
  year: 2002
  ident: C8CS00921J-(cit142)/*[position()=1]
  publication-title: Cell Res.
  doi: 10.1038/sj.cr.7290133
– volume: 29
  start-page: 1700996
  year: 2017
  ident: C8CS00921J-(cit7)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700996
– volume: 52
  start-page: 2705
  year: 2016
  ident: C8CS00921J-(cit96)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC08682E
– volume: 56
  start-page: 12102
  year: 2017
  ident: C8CS00921J-(cit107)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201704828
– volume: 13
  start-page: 1602869
  year: 2017
  ident: C8CS00921J-(cit157)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201602869
– volume: 12
  start-page: 8308
  year: 2018
  ident: C8CS00921J-(cit13)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b03590
– volume: 10
  start-page: 31106
  year: 2018
  ident: C8CS00921J-(cit22)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b11507
– volume: 10
  start-page: 7859
  year: 2018
  ident: C8CS00921J-(cit135)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00015
– volume: 4
  start-page: 81
  year: 2013
  ident: C8CS00921J-(cit194)/*[position()=1]
  publication-title: Theranostics
  doi: 10.7150/thno.7193
– volume-title: X-ray Nanochemistry: Concepts and Development
  year: 2018
  ident: C8CS00921J-(cit4)/*[position()=1]
  doi: 10.1007/978-3-319-78004-7
– volume: 9
  start-page: 14364
  year: 2017
  ident: C8CS00921J-(cit172)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR02384G
– volume: 6
  start-page: 4756
  year: 2018
  ident: C8CS00921J-(cit159)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB01398E
– volume: 20
  start-page: 1143
  year: 2015
  ident: C8CS00921J-(cit79)/*[position()=1]
  publication-title: Drug Discovery Today
  doi: 10.1016/j.drudis.2015.05.009
– volume: 113
  start-page: 1641
  year: 2013
  ident: C8CS00921J-(cit1)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200358s
– volume: 72
  start-page: 633
  year: 2008
  ident: C8CS00921J-(cit62)/*[position()=1]
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
  doi: 10.1016/j.ijrobp.2008.06.1916
– volume: 98
  start-page: 181914
  year: 2011
  ident: C8CS00921J-(cit61)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3589366
– volume: 138
  start-page: 10968
  year: 2016
  ident: C8CS00921J-(cit95)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05302
– volume: 8
  start-page: 1492
  year: 2008
  ident: C8CS00921J-(cit168)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl080496z
– volume: 35
  start-page: 3345
  year: 2010
  ident: C8CS00921J-(cit210)/*[position()=1]
  publication-title: Opt. Lett.
  doi: 10.1364/OL.35.003345
– volume: 26
  start-page: 1881
  year: 2014
  ident: C8CS00921J-(cit56)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm404044n
– volume: 23
  start-page: 45
  year: 2018
  ident: C8CS00921J-(cit114)/*[position()=1]
  publication-title: Colloid Interface Sci. Commun.
  doi: 10.1016/j.colcom.2018.01.004
– volume: 18
  start-page: 1582
  year: 2018
  ident: C8CS00921J-(cit202)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b03813
– volume: 135
  start-page: 13620
  year: 2013
  ident: C8CS00921J-(cit203)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405196f
– volume: 10
  start-page: 1241
  year: 2019
  ident: C8CS00921J-(cit124)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09158-1
– volume: 9
  start-page: 4321
  year: 2018
  ident: C8CS00921J-(cit193)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06655-7
– volume: 2
  start-page: 600
  year: 2018
  ident: C8CS00921J-(cit191)/*[position()=1]
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0203-4
– volume: 29
  start-page: 1606134
  year: 2017
  ident: C8CS00921J-(cit102)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606134
– volume: 45
  start-page: 263001
  year: 2012
  ident: C8CS00921J-(cit137)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/45/26/263001
– volume: 57
  start-page: 7883
  year: 2018
  ident: C8CS00921J-(cit110)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201802865
– volume: 9
  start-page: 12451
  year: 2015
  ident: C8CS00921J-(cit174)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05825
SSID ssj0011762
Score 2.6671538
SecondaryResourceType review_article
Snippet X-rays are widely applied in clinical medical facilities for radiotherapy (RT) and biomedical imaging. However, the sole use of X-rays for cancer treatment...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 373
SubjectTerms adverse effects
Attenuation coefficients
Biomedical materials
Body parts
Cancer
Cancer therapies
Contrast agents
energy
image analysis
Light sources
Materials science
Medical imaging
Nanotechnology
neoplasms
Organs
Penetration depth
Radiation therapy
Reagents
Side effects
tissues
Tumors
X-radiation
X-rays
Title X-ray-activated nanosystems for theranostic applications
URI https://www.ncbi.nlm.nih.gov/pubmed/31106315
https://www.proquest.com/docview/2234559721
https://www.proquest.com/docview/2232071824
https://www.proquest.com/docview/2286909679
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagPcCl4lXYUlAQXBBK2diOH8dqtdVSLeVAVlpOkeO1yyKUVPtAKr-ecWInga5Q4RJFY8uK_DnjGY_nG4TeaJPyQqYanBxpY2rMMBaKJrGSlDOqFkzWNSM_XrDJjJ7P03mo4e6zSzbFif65M6_kf1AFGeDqsmT_Adl2UBDAO-ALT0AYnrfCeB6v1HXsUhN-KGc5lqqsGmrmdbg-uHKimpS1F6nuW6QtY0C4v-n5Sbu4f6OY5ktVWeP3OXckE-7yLotluavz9bZbeF_8qfQEZJdfVdU_a3DpTSxuqgN79UjZMKa8YWwM-pOK_jpJ3l2dOL0Byt2fUjSa0cl6u2xovaHBh8QRoGqh144OKvnW7VMhNn_xKT-bTad5Np5nd9E-Bv8AFNz-6Tj7MG0DSAmva8m2HxyYaYl83439uy1yw8EAc2MVysDU5kb2AB14PyE6bUB_iO6Y8hG6Nwrl-R4j8Qf4UQ_8CMCPeuBHffCfoNnZOBtNYl8GI9aUsE1sBdaOg0gy8F3TIdYyVUpqTbXh6YJhTRSRC1vgAg8FxYWVxBJqubVCCW0VOUR7ZVWaZyiimnOWFKCnraEiZZLD7sYSK5kxhFM8QG_DhOTac8S7UiXf8_quApH5SIw-15N3PkCv275XDTPKzl7HYV5z_-esczBJqfNkcTJAr9pmmD8XrFKlqbZ1Hwzmr8D0b31cPTXJuBygpw1m7acQsGsZSdIBOgQQW3EH_tEthn2O7ne_wTHa26y25gUYoZvipV9wvwAaLIcX
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=X-ray-activated+nanosystems+for+theranostic+applications&rft.jtitle=Chemical+Society+reviews&rft.au=Chen%2C+Xiaofeng&rft.au=Song%2C+Jibin&rft.au=Chen%2C+Xiaoyuan&rft.au=Yang%2C+Huanghao&rft.date=2019-06-04&rft.issn=1460-4744&rft.volume=48&rft.issue=11+p.3073-3101&rft.spage=3073&rft.epage=3101&rft_id=info:doi/10.1039%2Fc8cs00921j&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon