X-ray-activated nanosystems for theranostic applications
X-rays are widely applied in clinical medical facilities for radiotherapy (RT) and biomedical imaging. However, the sole use of X-rays for cancer treatment leads to insufficient radiation energy deposition due to the low X-ray attenuation coefficients of living tissues and organs, producing unavoida...
Saved in:
Published in | Chemical Society reviews Vol. 48; no. 11; pp. 373 - 311 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
04.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | X-rays are widely applied in clinical medical facilities for radiotherapy (RT) and biomedical imaging. However, the sole use of X-rays for cancer treatment leads to insufficient radiation energy deposition due to the low X-ray attenuation coefficients of living tissues and organs, producing unavoidable excessive radiation doses with serious side effects to healthy body parts. Over the past decade, developments in materials science and nanotechnology have led to rapid progress in the field of X-ray-activated tumor-targeting nanosystems, which are able to tackle even systemic tumors and relieve the burden of exposure to large radiation doses. Additionally, novel imaging contrast agents and techniques have also been developed. In comparison with conventional external light sources (
e.g.
, near infrared), the X-ray technique is ideal for the activation of nanosystems for cancer treatment and biomedical imaging applications due to its nearly unlimited penetration depth in living tissues and organisms. In this review, we systematically describe the interaction mechanisms between X-rays and nanosystems, and provide an overview of X-ray-sensitive materials and the recent progress on X-ray-activated nanosystems for cancer-associated theranostic applications.
We systematically provide an overview of X-ray-sensitive materials and the recent progress on X-ray-activated nanosystems for cancer-associated theranostic applications. |
---|---|
AbstractList | X-rays are widely applied in clinical medical facilities for radiotherapy (RT) and biomedical imaging. However, the sole use of X-rays for cancer treatment leads to insufficient radiation energy deposition due to the low X-ray attenuation coefficients of living tissues and organs, producing unavoidable excessive radiation doses with serious side effects to healthy body parts. Over the past decade, developments in materials science and nanotechnology have led to rapid progress in the field of X-ray-activated tumor-targeting nanosystems, which are able to tackle even systemic tumors and relieve the burden of exposure to large radiation doses. Additionally, novel imaging contrast agents and techniques have also been developed. In comparison with conventional external light sources (e.g., near infrared), the X-ray technique is ideal for the activation of nanosystems for cancer treatment and biomedical imaging applications due to its nearly unlimited penetration depth in living tissues and organisms. In this review, we systematically describe the interaction mechanisms between X-rays and nanosystems, and provide an overview of X-ray-sensitive materials and the recent progress on X-ray-activated nanosystems for cancer-associated theranostic applications. X-rays are widely applied in clinical medical facilities for radiotherapy (RT) and biomedical imaging. However, the sole use of X-rays for cancer treatment leads to insufficient radiation energy deposition due to the low X-ray attenuation coefficients of living tissues and organs, producing unavoidable excessive radiation doses with serious side effects to healthy body parts. Over the past decade, developments in materials science and nanotechnology have led to rapid progress in the field of X-ray-activated tumor-targeting nanosystems, which are able to tackle even systemic tumors and relieve the burden of exposure to large radiation doses. Additionally, novel imaging contrast agents and techniques have also been developed. In comparison with conventional external light sources ( e.g. , near infrared), the X-ray technique is ideal for the activation of nanosystems for cancer treatment and biomedical imaging applications due to its nearly unlimited penetration depth in living tissues and organisms. In this review, we systematically describe the interaction mechanisms between X-rays and nanosystems, and provide an overview of X-ray-sensitive materials and the recent progress on X-ray-activated nanosystems for cancer-associated theranostic applications. We systematically provide an overview of X-ray-sensitive materials and the recent progress on X-ray-activated nanosystems for cancer-associated theranostic applications. X-rays are widely applied in clinical medical facilities for radiotherapy (RT) and biomedical imaging. However, the sole use of X-rays for cancer treatment leads to insufficient radiation energy deposition due to the low X-ray attenuation coefficients of living tissues and organs, producing unavoidable excessive radiation doses with serious side effects to healthy body parts. Over the past decade, developments in materials science and nanotechnology have led to rapid progress in the field of X-ray-activated tumor-targeting nanosystems, which are able to tackle even systemic tumors and relieve the burden of exposure to large radiation doses. Additionally, novel imaging contrast agents and techniques have also been developed. In comparison with conventional external light sources (e.g., near infrared), the X-ray technique is ideal for the activation of nanosystems for cancer treatment and biomedical imaging applications due to its nearly unlimited penetration depth in living tissues and organisms. In this review, we systematically describe the interaction mechanisms between X-rays and nanosystems, and provide an overview of X-ray-sensitive materials and the recent progress on X-ray-activated nanosystems for cancer-associated theranostic applications.X-rays are widely applied in clinical medical facilities for radiotherapy (RT) and biomedical imaging. However, the sole use of X-rays for cancer treatment leads to insufficient radiation energy deposition due to the low X-ray attenuation coefficients of living tissues and organs, producing unavoidable excessive radiation doses with serious side effects to healthy body parts. Over the past decade, developments in materials science and nanotechnology have led to rapid progress in the field of X-ray-activated tumor-targeting nanosystems, which are able to tackle even systemic tumors and relieve the burden of exposure to large radiation doses. Additionally, novel imaging contrast agents and techniques have also been developed. In comparison with conventional external light sources (e.g., near infrared), the X-ray technique is ideal for the activation of nanosystems for cancer treatment and biomedical imaging applications due to its nearly unlimited penetration depth in living tissues and organisms. In this review, we systematically describe the interaction mechanisms between X-rays and nanosystems, and provide an overview of X-ray-sensitive materials and the recent progress on X-ray-activated nanosystems for cancer-associated theranostic applications. X-rays are widely applied in clinical medical facilities for radiotherapy (RT) and biomedical imaging. However, the sole use of X-rays for cancer treatment leads to insufficient radiation energy deposition due to the low X-ray attenuation coefficients of living tissues and organs, producing unavoidable excessive radiation doses with serious side effects to healthy body parts. Over the past decade, developments in materials science and nanotechnology have led to rapid progress in the field of X-ray-activated tumor-targeting nanosystems, which are able to tackle even systemic tumors and relieve the burden of exposure to large radiation doses. Additionally, novel imaging contrast agents and techniques have also been developed. In comparison with conventional external light sources ( e.g. , near infrared), the X-ray technique is ideal for the activation of nanosystems for cancer treatment and biomedical imaging applications due to its nearly unlimited penetration depth in living tissues and organisms. In this review, we systematically describe the interaction mechanisms between X-rays and nanosystems, and provide an overview of X-ray-sensitive materials and the recent progress on X-ray-activated nanosystems for cancer-associated theranostic applications. |
Author | Chen, Xiaoyuan Yang, Huanghao Chen, Xiaofeng Song, Jibin |
AuthorAffiliation | MOE Key Laboratory for Analytical Science of Food Safety and Biology Fuzhou University National Institutes of Health College of Chemistry Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering |
AuthorAffiliation_xml | – sequence: 0 name: MOE Key Laboratory for Analytical Science of Food Safety and Biology – sequence: 0 name: College of Chemistry – sequence: 0 name: National Institute of Biomedical Imaging and Bioengineering – sequence: 0 name: Fuzhou University – sequence: 0 name: Laboratory of Molecular Imaging and Nanomedicine – sequence: 0 name: National Institutes of Health |
Author_xml | – sequence: 1 givenname: Xiaofeng surname: Chen fullname: Chen, Xiaofeng – sequence: 2 givenname: Jibin surname: Song fullname: Song, Jibin – sequence: 3 givenname: Xiaoyuan surname: Chen fullname: Chen, Xiaoyuan – sequence: 4 givenname: Huanghao surname: Yang fullname: Yang, Huanghao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31106315$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0UtLAzEQB_Agin3oxbtS8CLCal6bTY5SfFLwoIK3JZ1NMGUfNckK_fZuXwrFg6cM4TcDM_8B2q-b2iB0QvAVwUxdg4SAsaJktof6hAuc8IzzfdTHDIsEY0J7aBDCrKtIJugh6jFCsGAk7SP5nni9SDRE96WjKUa1rpuwCNFUYWQbP4ofxi-_ooORns9LBzq6pg5H6MDqMpjjzTtEb3e3r-OHZPJ8_zi-mSTAmYiJlRQyxqUShPAUU1Cp1gqAg8nSQlBgmqnCTumUYsnp1CpmGbeZtVJLsJoN0cV67tw3n60JMa9cAFOWujZNG3JKpVBYiUz9gzKKMyIp7-j5Dp01ra-7RZaKp6nKKOnU2Ua108oU-dy7SvtFvj1fB_AagG9C8Mbm4OLqPtFrV-YE58uE8rEcv6wSeupaLndatlP_xKdr7AP8uN-42Tfgi5iS |
CitedBy_id | crossref_primary_10_1021_acsnano_1c01146 crossref_primary_10_1002_adma_202301612 crossref_primary_10_1002_adfm_202404123 crossref_primary_10_1021_acs_accounts_2c00699 crossref_primary_10_1038_s41467_022_30917_0 crossref_primary_10_5802_crchim_309 crossref_primary_10_1002_adfm_202301002 crossref_primary_10_1039_D0NR01821J crossref_primary_10_1021_acsami_1c11032 crossref_primary_10_1007_s11432_024_4057_0 crossref_primary_10_1002_EXP_20230124 crossref_primary_10_1039_D1DT02207E crossref_primary_10_34133_2021_9892152 crossref_primary_10_1021_acsabm_2c00801 crossref_primary_10_2139_ssrn_4118526 crossref_primary_10_1039_C9NA00583H crossref_primary_10_1002_adma_202004385 crossref_primary_10_3390_nano13111790 crossref_primary_10_1002_ange_202210415 crossref_primary_10_1016_j_jrras_2024_100963 crossref_primary_10_1016_j_mattod_2024_07_004 crossref_primary_10_1186_s12951_021_00862_z crossref_primary_10_1002_ange_202308194 crossref_primary_10_1016_j_ijpharm_2020_119320 crossref_primary_10_1021_acs_nanolett_4c00223 crossref_primary_10_1039_D3NA00397C crossref_primary_10_1002_anie_202112237 crossref_primary_10_1016_j_cej_2024_150583 crossref_primary_10_34133_research_0090 crossref_primary_10_1016_j_ccr_2024_216101 crossref_primary_10_1002_ange_202109802 crossref_primary_10_1093_nsr_nwaf045 crossref_primary_10_1080_19392699_2024_2363857 crossref_primary_10_1016_j_nantod_2020_101014 crossref_primary_10_1002_adma_202413210 crossref_primary_10_1002_ange_202306100 crossref_primary_10_1002_ange_202422995 crossref_primary_10_1021_acs_jpclett_2c02057 crossref_primary_10_1002_adma_202105783 crossref_primary_10_1021_acs_chemmater_4c00020 crossref_primary_10_1002_anie_202107231 crossref_primary_10_1016_j_actbio_2022_10_049 crossref_primary_10_1002_adfm_202301462 crossref_primary_10_3390_ma15093251 crossref_primary_10_1016_j_nantod_2021_101208 crossref_primary_10_1021_acsnano_1c08350 crossref_primary_10_1039_D0NR04634E crossref_primary_10_1002_adfm_202113353 crossref_primary_10_1088_1402_4896_ace1b7 crossref_primary_10_1021_acsanm_1c01115 crossref_primary_10_1016_j_addr_2023_114763 crossref_primary_10_1002_advs_202309992 crossref_primary_10_1039_D2BM00101B crossref_primary_10_1021_acsnano_9b08133 crossref_primary_10_1039_D2RA01425D crossref_primary_10_1002_anie_202306100 crossref_primary_10_1016_j_ccr_2024_216006 crossref_primary_10_3390_ijms20143490 crossref_primary_10_1016_j_ijbiomac_2024_135608 crossref_primary_10_1002_lpor_202400147 crossref_primary_10_1002_adma_202203734 crossref_primary_10_1039_D3TB00608E crossref_primary_10_1002_smll_202500504 crossref_primary_10_1007_s11740_022_01147_6 crossref_primary_10_1039_D0TB02294B crossref_primary_10_1016_j_addr_2025_115549 crossref_primary_10_1039_D3QI02301J crossref_primary_10_1002_cbic_202300155 crossref_primary_10_1016_j_bioactmat_2022_01_014 crossref_primary_10_3390_ma13225234 crossref_primary_10_1016_j_cclet_2022_03_054 crossref_primary_10_1002_smll_202006582 crossref_primary_10_1016_j_mattod_2022_05_022 crossref_primary_10_1186_s12951_022_01631_2 crossref_primary_10_1002_adfm_202107530 crossref_primary_10_1007_s12274_022_4369_4 crossref_primary_10_1002_VIW_20200043 crossref_primary_10_1016_j_actbio_2020_06_044 crossref_primary_10_1039_D0RA01935F crossref_primary_10_1016_j_cclet_2022_02_016 crossref_primary_10_1039_D2TC01117D crossref_primary_10_1002_advs_202001675 crossref_primary_10_1039_D4DT02969K crossref_primary_10_1016_j_jlumin_2023_119929 crossref_primary_10_1007_s12274_020_3136_7 crossref_primary_10_1016_j_matt_2024_11_030 crossref_primary_10_1080_1536383X_2021_1993443 crossref_primary_10_1111_jace_17643 crossref_primary_10_3390_biomedicines9010069 crossref_primary_10_1002_smll_201903254 crossref_primary_10_1016_j_ccr_2024_215696 crossref_primary_10_3390_targets1010004 crossref_primary_10_1016_j_cej_2024_153363 crossref_primary_10_1021_acs_nanolett_2c02472 crossref_primary_10_1002_advs_202004391 crossref_primary_10_1186_s43593_022_00024_0 crossref_primary_10_1016_j_cej_2021_129262 crossref_primary_10_1007_s11033_021_06524_5 crossref_primary_10_1016_j_jddst_2023_105140 crossref_primary_10_1038_s41565_021_00922_3 crossref_primary_10_1039_D1NR03034E crossref_primary_10_1039_D1TC00525A crossref_primary_10_1021_acsami_0c06010 crossref_primary_10_1002_wnan_1642 crossref_primary_10_1016_j_jlumin_2021_118589 crossref_primary_10_1007_s40843_022_2140_7 crossref_primary_10_1002_adpr_202300296 crossref_primary_10_1016_j_cclet_2023_108899 crossref_primary_10_1016_j_jlumin_2024_120511 crossref_primary_10_1039_D3CS00862B crossref_primary_10_1126_sciadv_adq3940 crossref_primary_10_1016_j_nantod_2020_101003 crossref_primary_10_1016_j_engreg_2024_01_002 crossref_primary_10_1016_j_nantod_2023_102095 crossref_primary_10_1038_s41467_024_47559_z crossref_primary_10_1080_10420150_2019_1667357 crossref_primary_10_1021_acs_jpcc_2c01737 crossref_primary_10_1002_VIW_20200149 crossref_primary_10_1186_s12951_022_01494_7 crossref_primary_10_1002_ange_202112237 crossref_primary_10_1016_j_nantod_2021_101099 crossref_primary_10_1021_acsami_4c11585 crossref_primary_10_1016_j_ajps_2024_100954 crossref_primary_10_1038_s41566_020_00751_1 crossref_primary_10_2217_nnm_2021_0427 crossref_primary_10_1038_s41557_024_01501_4 crossref_primary_10_1002_adom_202402739 crossref_primary_10_1364_OME_502982 crossref_primary_10_1007_s12274_022_4191_z crossref_primary_10_1007_s00604_022_05411_5 crossref_primary_10_15407_fm29_02_189 crossref_primary_10_3390_cimb46110748 crossref_primary_10_1002_advs_201902561 crossref_primary_10_1002_ange_202406332 crossref_primary_10_1038_s41467_022_32054_0 crossref_primary_10_1002_adfm_202006353 crossref_primary_10_1039_D4CS00599F crossref_primary_10_1007_s11426_022_1355_6 crossref_primary_10_1016_j_cej_2024_156964 crossref_primary_10_3390_polym15061490 crossref_primary_10_1515_nanoph_2021_0254 crossref_primary_10_1016_j_jddst_2023_104674 crossref_primary_10_1002_smll_202300341 crossref_primary_10_1002_adfm_201906010 crossref_primary_10_1038_s41551_024_01274_8 crossref_primary_10_1021_acsami_2c02484 crossref_primary_10_1016_j_pbiomolbio_2022_08_006 crossref_primary_10_1021_acsami_4c23023 crossref_primary_10_1002_adma_202007488 crossref_primary_10_1016_j_ccr_2020_213355 crossref_primary_10_1016_j_jallcom_2023_169845 crossref_primary_10_1016_j_matpr_2022_05_005 crossref_primary_10_1002_anie_202422995 crossref_primary_10_1007_s40843_023_2548_8 crossref_primary_10_1039_D2BM01496C crossref_primary_10_1002_adma_202314083 crossref_primary_10_1016_j_jlumin_2023_119862 crossref_primary_10_1002_ange_202107231 crossref_primary_10_1186_s12951_022_01537_z crossref_primary_10_1063_5_0198695 crossref_primary_10_1016_j_cej_2024_154652 crossref_primary_10_1021_acsnano_2c08047 crossref_primary_10_1002_bmm2_12136 crossref_primary_10_1016_j_nanoen_2020_105437 crossref_primary_10_1039_D0DT00974A crossref_primary_10_3390_s22031184 crossref_primary_10_1016_j_biomaterials_2024_122797 crossref_primary_10_1002_adma_202005062 crossref_primary_10_1002_advs_202207004 crossref_primary_10_1016_j_jlumin_2022_119437 crossref_primary_10_3390_cancers12092491 crossref_primary_10_1016_j_chempr_2024_07_035 crossref_primary_10_1021_acsbiomaterials_1c00543 crossref_primary_10_1021_acs_accounts_2c00517 crossref_primary_10_1016_j_cej_2024_158683 crossref_primary_10_1016_j_mattod_2024_06_017 crossref_primary_10_1002_anie_202109802 crossref_primary_10_1021_acs_analchem_3c01099 crossref_primary_10_1016_j_biomaterials_2022_121810 crossref_primary_10_1016_j_pmatsci_2021_100871 crossref_primary_10_1002_lpor_202300565 crossref_primary_10_1021_acsami_4c17909 crossref_primary_10_1016_j_addr_2022_114643 crossref_primary_10_1002_bmm2_12122 crossref_primary_10_1039_D4NR02311K crossref_primary_10_1016_j_trechm_2022_05_001 crossref_primary_10_1021_acsenergylett_0c02430 crossref_primary_10_1039_D3TC03925K crossref_primary_10_1186_s12951_023_02279_2 crossref_primary_10_1002_advs_202302395 crossref_primary_10_1039_D2TB00141A crossref_primary_10_1002_anie_202308194 crossref_primary_10_1016_j_biomaterials_2020_120239 crossref_primary_10_1016_j_eng_2024_06_010 crossref_primary_10_1016_j_jddst_2023_104525 crossref_primary_10_1039_D4CP03281K crossref_primary_10_3390_cryst10050370 crossref_primary_10_3390_cancers13143484 crossref_primary_10_1088_1361_6528_ad183e crossref_primary_10_1039_D3TB03046F crossref_primary_10_1021_acsanm_4c02091 crossref_primary_10_1021_acs_chemrev_3c00506 crossref_primary_10_1039_C9CS00330D crossref_primary_10_1002_anie_202425661 crossref_primary_10_1016_j_jlumin_2022_119492 crossref_primary_10_1039_D1CS01145F crossref_primary_10_1002_adhm_202404144 crossref_primary_10_3390_targets2040019 crossref_primary_10_1021_acs_chemrev_2c00404 crossref_primary_10_1002_adma_202109920 crossref_primary_10_1002_advs_202103444 crossref_primary_10_1039_D3QI00777D crossref_primary_10_1002_adma_202000377 crossref_primary_10_1016_j_msec_2021_112122 crossref_primary_10_2139_ssrn_4088392 crossref_primary_10_3390_ma16031147 crossref_primary_10_1002_adom_202200694 crossref_primary_10_1039_D4TC02985B crossref_primary_10_1002_advs_202402039 crossref_primary_10_1002_anie_202406332 crossref_primary_10_1186_s12951_024_03057_4 crossref_primary_10_1126_sciadv_abn1675 crossref_primary_10_1016_j_jlumin_2022_119241 crossref_primary_10_1039_D1TB02524D crossref_primary_10_1002_advs_202003584 crossref_primary_10_1021_acsnano_1c11422 crossref_primary_10_1016_j_addr_2022_114457 crossref_primary_10_1039_D4BM00395K crossref_primary_10_2139_ssrn_4088391 crossref_primary_10_1002_advs_202308632 crossref_primary_10_1016_j_onano_2023_100152 crossref_primary_10_1002_adfm_202104325 crossref_primary_10_3390_cancers13174447 crossref_primary_10_1002_adom_202203038 crossref_primary_10_55696_ejset_1101711 crossref_primary_10_1016_j_ccr_2022_214999 crossref_primary_10_1002_smll_202105160 crossref_primary_10_1002_ange_202425661 crossref_primary_10_1016_j_cclet_2024_109632 crossref_primary_10_1021_acsnano_2c07286 crossref_primary_10_1016_j_pmatsci_2023_101167 crossref_primary_10_1039_D1NR07096G crossref_primary_10_1016_j_pmatsci_2024_101246 crossref_primary_10_1002_adfm_202305866 crossref_primary_10_1038_s41377_022_00808_6 crossref_primary_10_1016_j_biomaterials_2024_122620 crossref_primary_10_1186_s12951_024_02931_5 crossref_primary_10_1016_j_isci_2022_105593 crossref_primary_10_1038_s41392_023_01332_8 crossref_primary_10_1016_j_colsurfb_2023_113303 crossref_primary_10_1016_j_biomaterials_2024_123031 crossref_primary_10_1016_j_oor_2024_100307 crossref_primary_10_1039_D4CS00708E crossref_primary_10_1016_j_compscitech_2024_110700 crossref_primary_10_1002_adhm_202101174 crossref_primary_10_1016_j_ccr_2022_214866 crossref_primary_10_1038_s41566_020_00744_0 crossref_primary_10_1016_j_cej_2024_150364 crossref_primary_10_1016_j_jcis_2022_06_174 crossref_primary_10_31857_S1028096023010156 crossref_primary_10_1002_cplu_202300352 crossref_primary_10_1002_adfm_202113168 crossref_primary_10_1002_adma_202310663 crossref_primary_10_1016_j_mtnano_2022_100253 crossref_primary_10_1021_acsabm_0c00573 crossref_primary_10_1021_acsnano_3c01068 crossref_primary_10_1007_s12274_020_3000_9 crossref_primary_10_3390_ma16020830 crossref_primary_10_3788_LOP232120 crossref_primary_10_1002_adhm_202400372 crossref_primary_10_1002_anie_202210415 crossref_primary_10_1039_D3CS00087G crossref_primary_10_1186_s12951_021_01191_x |
Cites_doi | 10.1038/s41467-018-04703-w 10.1039/C7TB01425B 10.1002/adfm.201703832 10.1158/0008-5472.CAN-04-1525 10.1007/s10555-007-9056-0 10.1021/cr000040l 10.1016/j.biomaterials.2007.04.032 10.1039/C4NR00708E 10.1021/acsnano.7b00476 10.3390/nano8050306 10.1016/j.biomaterials.2017.05.025 10.1021/acs.chemrev.6b00290 10.1021/nl504123r 10.1002/smll.201501923 10.1021/ar5000067 10.1111/j.1600-065X.2008.00610.x 10.1021/acsnano.8b01010 10.1016/j.ccr.2013.11.017 10.1021/acs.chemrev.5b00125 10.1021/jacs.8b11593 10.1021/acs.nanolett.8b04763 10.1002/adma.201701268 10.1002/adom.201400571 10.1109/TMI.2010.2055883 10.1021/nn506107c 10.1039/C6CS00616G 10.1021/acsami.7b03802 10.1088/0031-9155/51/13/R03 10.7150/thno.22172 10.1063/1.4890105 10.4155/tde.12.147 10.1002/smll.201201765 10.1155/2012/751075 10.1021/acsami.5b03067 10.1038/nbt.3330 10.1002/adma.201602111 10.1021/nl504044p 10.1021/acsnano.8b02038 10.1038/nphoton.2015.216 10.1039/C4CS00392F 10.1038/nmat3908 10.3322/caac.20114 10.3390/cancers6031670 10.1126/science.aaa8172 10.1211/jpp.60.8.0005 10.1021/acs.chemmater.8b00565 10.1038/nphoton.2015.82 10.1021/acs.chemrev.5b00148 10.1021/acsomega.8b00227 10.1039/C7NR05233B 10.1021/acs.analchem.8b01315 10.1002/adfm.201707140 10.1006/gyno.1996.0075 10.1016/j.colsurfb.2015.11.063 10.1002/adma.201300081 10.1039/C4CS00532E 10.1016/j.biomaterials.2017.01.001 10.1021/acsami.6b15183 10.1016/j.biomaterials.2018.01.047 10.3322/caac.21358 10.1118/1.3457332 10.1002/adfm.201703535 10.1039/c2jm34950g 10.1021/acsnano.5b07473 10.1002/smll.201803156 10.1002/adfm.201802159 10.1016/S0360-3016(97)00372-6 10.3390/nano8060401 10.1021/jacs.8b00368 10.1039/C8CC04653K 10.1002/smll.201500735 10.1002/adfm.201704623 10.1021/acsami.8b03660 10.1021/ar100129p 10.1111/jace.12788 10.1166/jnn.2012.6160 10.1186/s12951-018-0344-3 10.1021/acs.chemrev.5b00091 10.1002/adma.201801743 10.1021/ar7000815 10.1016/j.biopha.2018.08.074 10.1038/nrc3958 10.1021/acs.nanolett.7b04741 10.1021/acs.jpcb.5b01752 10.1016/0003-9861(91)90224-7 10.1039/C8TB00893K 10.1007/s12274-016-1205-8 10.1021/acsnano.8b01508 10.1021/ja404985w 10.1039/C7NR02213A 10.1103/PhysRevB.70.045313 10.1007/s12030-008-9009-x 10.1021/acsnano.7b04230 10.1021/cr400425h 10.1021/acs.chemmater.8b03587 10.3109/02656736.2015.1005178 10.1039/c2cc37169c 10.1016/j.jinorgbio.2014.12.016 10.1002/ange.201812272 10.1039/C3CC48661C 10.1002/adma.201504617 10.1152/physrev.00029.2006 10.1002/adma.201606681 10.1021/acsnano.6b06067 10.1039/C7NR02926H 10.1021/acs.inorgchem.5b02282 10.2147/IJN.S137833 10.1002/adma.201603997 10.1016/j.niox.2008.04.015 10.1021/acsami.7b11295 10.1002/adma.201707634 10.1021/acsnano.9b01818 10.1021/acsnano.7b01346 10.1166/jnn.2006.327 10.1002/hlca.19960790428 10.1039/C6CS00271D 10.1039/c4nr01826e 10.1039/c0pp00265h 10.1021/acsnano.7b08103 10.1021/acsami.7b13920 10.1002/adhm.201800643 10.1016/j.addr.2008.08.004 10.1021/nn503973z 10.1038/s41586-018-0451-1 10.1038/nrc.2018.6 10.1016/j.tips.2017.11.003 10.1021/acs.nanolett.8b02639 10.1002/smll.200902408 10.1088/0957-0233/17/4/R01 10.1021/acs.nanolett.8b02720 10.1002/anie.201802351 10.1021/acsnano.7b04737 10.1021/acsnano.7b01032 10.1039/C7DT01919J 10.1002/adma.201506428 10.1039/C7NR04684G 10.1038/nature10673 10.1021/acsnano.6b01401 10.1002/adfm.201707496 10.1002/pssb.200844039 10.1039/C8PY00192H 10.1002/adfm.201701388 10.7150/thno.27351 10.1002/anie.201700919 10.1039/C2CS15261D 10.1021/jacs.8b05817 10.1166/jbn.2018.2553 10.1021/acs.chemrev.5b00008 10.1016/j.ccell.2015.03.001 10.1002/anie.201707819 10.1039/C1CS15187H 10.1021/la302357h 10.1002/anie.201504536 10.1038/nrd2222 10.1038/nphoton.2014.166 10.1021/acs.inorgchem.7b00240 10.1038/nrc3239 10.1039/C4TB01340A 10.1002/adma.201603114 10.2217/nnm.14.55 10.1002/jbio.201100062 10.1021/ja500671h 10.1007/978-3-642-57920-2 10.1021/acsnano.7b03037 10.1039/C8CS00234G 10.1021/acsnano.5b04606 10.1021/ja508679h 10.1021/acsnano.8b06483 10.1002/anie.201800594 10.1002/adma.201804046 10.1016/j.biomaterials.2018.10.016 10.1021/bc3002985 10.1039/C6NR09553D 10.1021/acs.chemrev.7b00568 10.1039/C7NR06405E 10.1002/adma.201100919 10.1039/C8NR06867D 10.1002/adfm.201603845 10.1002/anie.201408472 10.1002/adfm.201601341 10.1002/adfm.201604382 10.2147/IJN.S164967 10.1021/jp4077189 10.1038/sj.cr.7290133 10.1002/adma.201700996 10.1039/C5CC08682E 10.1002/anie.201704828 10.1002/smll.201602869 10.1021/acsnano.8b03590 10.1021/acsami.8b11507 10.1021/acsami.8b00015 10.7150/thno.7193 10.1007/978-3-319-78004-7 10.1039/C7NR02384G 10.1039/C8TB01398E 10.1016/j.drudis.2015.05.009 10.1021/cr200358s 10.1016/j.ijrobp.2008.06.1916 10.1063/1.3589366 10.1021/jacs.6b05302 10.1021/nl080496z 10.1364/OL.35.003345 10.1021/cm404044n 10.1016/j.colcom.2018.01.004 10.1021/acs.nanolett.7b03813 10.1021/ja405196f 10.1038/s41467-019-09158-1 10.1038/s41467-018-06655-7 10.1038/s41551-018-0203-4 10.1002/adma.201606134 10.1088/0022-3727/45/26/263001 10.1002/anie.201802865 10.1021/acsnano.5b05825 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/c8cs00921j |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 311 |
ExternalDocumentID | 31106315 10_1039_C8CS00921J c8cs00921j |
Genre | Journal Article Review |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29B 2WC 4.4 53G 5GY 6J9 705 70~ 7~J 85S AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K COF CS3 DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- OK1 P2P R7B R7D RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 ~02 AAYXX AFRZK AKMSF ALUYA CITATION R56 NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c436t-f82c734896114502c95aa9cc4ce75d62c3a39dfb2b20842bf93f34f7ff8a8cfa3 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Fri Jul 11 12:42:22 EDT 2025 Fri Jul 11 01:53:54 EDT 2025 Sun Jun 29 16:13:54 EDT 2025 Thu Apr 03 07:00:23 EDT 2025 Thu Apr 24 23:03:03 EDT 2025 Tue Jul 01 04:18:42 EDT 2025 Tue Dec 17 21:00:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c436t-f82c734896114502c95aa9cc4ce75d62c3a39dfb2b20842bf93f34f7ff8a8cfa3 |
Notes | Xiaoyuan (Shawn) Chen received his PhD in chemistry from the University of Idaho in 1999. He joined the University of Southern California as an Assistant Professor of Radiology in 2002. He then moved to Stanford University in 2004 and was promoted to Associate Professor in 2008. In 2009, he joined the Intramural Research Program of the NIBIB/NIH as a Senior Investigator and Chief of the Laboratory of Molecular Imaging and Nanomedicine (LOMIN). He has authored/co-authored over 700 peer-reviewed papers and the total citations exceed 50 000 (H-index: 122). He is also the founding editor of journal Theranostics. Jibin Song obtained his PhD degree in Chemical and Biomedical Engineering at Nanyang Technological University, Singapore, in 2014. He then worked with Prof. Xiaoyuan (Shawn) Chen as a postdoctoral fellow at National Institutes of Health (NIH). After finish the postdoctoral training, he joined the Fuzhou University as a "Min Jiang Scholar" Professor of analytical chemistry. Prof. Song has published over 50 papers in high impact journals. His research focuses on developing molecular imaging nanoprobes for bioimaging, biosensing and drug/gene delivery. Xiaofeng Chen received his bachelor's degree from Fuzhou University in June 2016. Now he is persuing his doctor degree under the supervision of Prof. Huanghao Yang. His research mainly focuses on design, synthesis and biomedical applications of luminescence materials. Huanghao Yang is a fellow of the Royal Society of Chemistry, who received his PhD from Xiamen University in 2002 and engaged in postdoctoral research at Hong Kong University of Science and Technology (2002-2004). He joined Fuzhou University in 2008 as a Min Jiang Scholar Professor. He has been supported by the National Science Foundation for Distinguished Young Scholars of China in 2011 and the National Award for the Chang Jiang Scholar Program in 2012. Prof. Yang's research interests mostly focus on nanotechnology, bioanalysis and cancer therapy. He has authored/co-authored over 250 peer-reviewed papers and the total citations exceed 13 700 (H-index of 60). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4771-5006 0000-0001-5894-0909 0000-0002-9622-0870 |
PMID | 31106315 |
PQID | 2234559721 |
PQPubID | 2047503 |
PageCount | 29 |
ParticipantIDs | proquest_journals_2234559721 pubmed_primary_31106315 rsc_primary_c8cs00921j crossref_primary_10_1039_C8CS00921J proquest_miscellaneous_2232071824 crossref_citationtrail_10_1039_C8CS00921J proquest_miscellaneous_2286909679 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190604 |
PublicationDateYYYYMMDD | 2019-06-04 |
PublicationDate_xml | – month: 6 year: 2019 text: 20190604 day: 4 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Rieffel (C8CS00921J-(cit24)/*[position()=1]) 2015; 11 Attaluri (C8CS00921J-(cit164)/*[position()=1]) 2015; 31 Wen (C8CS00921J-(cit118)/*[position()=1]) 2016; 28 Xu (C8CS00921J-(cit119)/*[position()=1]) 2018; 28 Hong (C8CS00921J-(cit130)/*[position()=1]) 2014; 8 Gaikwad (C8CS00921J-(cit202)/*[position()=1]) 2018; 18 Leo (C8CS00921J-(cit45)/*[position()=1]) 1994 Xu (C8CS00921J-(cit204)/*[position()=1]) 2017; 56 Lin (C8CS00921J-(cit80)/*[position()=1]) 2017; 29 Yakunin (C8CS00921J-(cit67)/*[position()=1]) 2015; 9 Espinoza (C8CS00921J-(cit54)/*[position()=1]) 2018; 10 Osakada (C8CS00921J-(cit46)/*[position()=1]) 2013; 49 Behmand (C8CS00921J-(cit94)/*[position()=1]) 2015; 119 Spirou (C8CS00921J-(cit167)/*[position()=1]) 2018; 8 Trojan-Piegza (C8CS00921J-(cit52)/*[position()=1]) 2014; 97 Carpenter (C8CS00921J-(cit53)/*[position()=1]) 2010; 37 Liu (C8CS00921J-(cit156)/*[position()=1]) 2017; 121 Yu (C8CS00921J-(cit39)/*[position()=1]) 2019; 131 Lin (C8CS00921J-(cit92)/*[position()=1]) 2018; 54 Blanco (C8CS00921J-(cit154)/*[position()=1]) 2015; 33 Sham (C8CS00921J-(cit35)/*[position()=1]) 2004; 70 Yong (C8CS00921J-(cit174)/*[position()=1]) 2015; 9 Diagaradjane (C8CS00921J-(cit168)/*[position()=1]) 2008; 8 Hu (C8CS00921J-(cit201)/*[position()=1]) 2018; 18 Kirakci (C8CS00921J-(cit100)/*[position()=1]) 2018; 6 Huo (C8CS00921J-(cit192)/*[position()=1]) 2017; 11 Lusic (C8CS00921J-(cit1)/*[position()=1]) 2013; 113 Lu (C8CS00921J-(cit103)/*[position()=1]) 2014; 136 Valais (C8CS00921J-(cit63)/*[position()=1]) 2015; 637 Sun (C8CS00921J-(cit26)/*[position()=1]) 2011; 23 Mao (C8CS00921J-(cit165)/*[position()=1]) 2016; 10 Liu (C8CS00921J-(cit175)/*[position()=1]) 2017; 9 Yu (C8CS00921J-(cit90)/*[position()=1]) 2018; 7 Nikl (C8CS00921J-(cit34)/*[position()=1]) 2006; 17 Wang (C8CS00921J-(cit42)/*[position()=1]) 2019 Kobayashi (C8CS00921J-(cit194)/*[position()=1]) 2013; 4 Lu (C8CS00921J-(cit191)/*[position()=1]) 2018; 2 Jiang (C8CS00921J-(cit122)/*[position()=1]) 2018; 12 Radi (C8CS00921J-(cit145)/*[position()=1]) 1991; 288 Rajaee (C8CS00921J-(cit171)/*[position()=1]) 2018; 14 Du (C8CS00921J-(cit178)/*[position()=1]) 2017; 29 Santin (C8CS00921J-(cit182)/*[position()=1]) 1997; 39 Spirou (C8CS00921J-(cit170)/*[position()=1]) 2018; 8 Takahashi (C8CS00921J-(cit32)/*[position()=1]) 2008; 3 Lin (C8CS00921J-(cit76)/*[position()=1]) 2017; 9 Du (C8CS00921J-(cit173)/*[position()=1]) 2017; 9 Li (C8CS00921J-(cit28)/*[position()=1]) 2017; 10 Ma (C8CS00921J-(cit74)/*[position()=1]) 2014; 105 Kang (C8CS00921J-(cit61)/*[position()=1]) 2011; 98 Wang (C8CS00921J-(cit6)/*[position()=1]) 2018; 39 Dou (C8CS00921J-(cit82)/*[position()=1]) 2016; 10 He (C8CS00921J-(cit104)/*[position()=1]) 2015; 115 Zhang (C8CS00921J-(cit139)/*[position()=1]) 2012; 28 Yang (C8CS00921J-(cit89)/*[position()=1]) 2017; 11 Li (C8CS00921J-(cit198)/*[position()=1]) 2018; 28 Xie (C8CS00921J-(cit111)/*[position()=1]) 2017; 56 Tsvirkun (C8CS00921J-(cit200)/*[position()=1]) 2018; 140 Pacher (C8CS00921J-(cit144)/*[position()=1]) 2007; 87 Chanmee (C8CS00921J-(cit180)/*[position()=1]) 2014; 6 Osakada (C8CS00921J-(cit81)/*[position()=1]) 2014; 50 Liu (C8CS00921J-(cit112)/*[position()=1]) 2018; 8 Juzenas (C8CS00921J-(cit10)/*[position()=1]) 2008; 60 Santin (C8CS00921J-(cit183)/*[position()=1]) 1996; 60 GarciaFresnadillo (C8CS00921J-(cit109)/*[position()=1]) 1996; 79 Miller (C8CS00921J-(cit153)/*[position()=1]) 2013; 4 Song (C8CS00921J-(cit7)/*[position()=1]) 2017; 29 Kirakci (C8CS00921J-(cit36)/*[position()=1]) 2016; 55 Xu (C8CS00921J-(cit58)/*[position()=1]) 2016; 116 Chen (C8CS00921J-(cit132)/*[position()=1]) 2006; 6 Fan (C8CS00921J-(cit149)/*[position()=1]) 2015; 54 Zhang (C8CS00921J-(cit25)/*[position()=1]) 2017; 9 Clement (C8CS00921J-(cit16)/*[position()=1]) 2018; 13 Nikl (C8CS00921J-(cit31)/*[position()=1]) 2008; 245 Guo (C8CS00921J-(cit4)/*[position()=1]) 2018 Zhou (C8CS00921J-(cit11)/*[position()=1]) 2018; 57 Song (C8CS00921J-(cit185)/*[position()=1]) 2018; 18 Kamkaew (C8CS00921J-(cit29)/*[position()=1]) 2016; 10 Ding (C8CS00921J-(cit43)/*[position()=1]) 2018; 9 Chen (C8CS00921J-(cit176)/*[position()=1]) 2017; 34 Agostinis (C8CS00921J-(cit127)/*[position()=1]) 2011; 61 Moeller (C8CS00921J-(cit113)/*[position()=1]) 2007; 26 Dou (C8CS00921J-(cit20)/*[position()=1]) 2018; 8 Huang (C8CS00921J-(cit91)/*[position()=1]) 2017; 27 Wang (C8CS00921J-(cit50)/*[position()=1]) 2011; 44 Zhang (C8CS00921J-(cit70)/*[position()=1]) 2017; 27 Jin (C8CS00921J-(cit115)/*[position()=1]) 2007; 28 Ngwa (C8CS00921J-(cit189)/*[position()=1]) 2018; 18 Topalian (C8CS00921J-(cit186)/*[position()=1]) 2015; 27 Attia (C8CS00921J-(cit44)/*[position()=1]) 2014; 8 Weiming (C8CS00921J-(cit142)/*[position()=1]) 2002; 12 Yu (C8CS00921J-(cit17)/*[position()=1]) 2017; 11 Ferrer-Sueta (C8CS00921J-(cit143)/*[position()=1]) 2018; 118 Lu (C8CS00921J-(cit123)/*[position()=1]) 2018; 12 Wang (C8CS00921J-(cit138)/*[position()=1]) 2018; 12 Lan (C8CS00921J-(cit106)/*[position()=1]) 2018; 140 Graves (C8CS00921J-(cit137)/*[position()=1]) 2012; 45 Guidelli (C8CS00921J-(cit65)/*[position()=1]) 2018; 30 Nam (C8CS00921J-(cit95)/*[position()=1]) 2016; 138 Chen (C8CS00921J-(cit157)/*[position()=1]) 2017; 13 Bulin (C8CS00921J-(cit15)/*[position()=1]) 2013; 117 Wang (C8CS00921J-(cit160)/*[position()=1]) 2018; 28 Pan (C8CS00921J-(cit114)/*[position()=1]) 2018; 23 Barker (C8CS00921J-(cit116)/*[position()=1]) 2015; 15 Jiang (C8CS00921J-(cit216)/*[position()=1]) 2017; 11 Tang (C8CS00921J-(cit133)/*[position()=1]) 2015; 7 Patel (C8CS00921J-(cit184)/*[position()=1]) 2018; 3 Krasilnikova (C8CS00921J-(cit97)/*[position()=1]) 2015; 144 Wang (C8CS00921J-(cit177)/*[position()=1]) 2016; 26 Cui (C8CS00921J-(cit214)/*[position()=1]) 2018; 140 Deng (C8CS00921J-(cit22)/*[position()=1]) 2018; 10 Nikl (C8CS00921J-(cit33)/*[position()=1]) 2015; 3 Chen (C8CS00921J-(cit37)/*[position()=1]) 2018; 561 Kalender (C8CS00921J-(cit21)/*[position()=1]) 2006; 51 Wu (C8CS00921J-(cit102)/*[position()=1]) 2017; 29 Wolfbeis (C8CS00921J-(cit207)/*[position()=1]) 2015; 44 Garnett (C8CS00921J-(cit181)/*[position()=1]) 2004; 64 Xiao (C8CS00921J-(cit169)/*[position()=1]) 2013; 135 Hou (C8CS00921J-(cit128)/*[position()=1]) 2015; 9 Yu (C8CS00921J-(cit83)/*[position()=1]) 2018; 161 Yong (C8CS00921J-(cit93)/*[position()=1]) 2017; 11 Pardoll (C8CS00921J-(cit188)/*[position()=1]) 2012; 12 Lu (C8CS00921J-(cit101)/*[position()=1]) 2018; 30 Herrera (C8CS00921J-(cit5)/*[position()=1]) 2017; 67 Zhang (C8CS00921J-(cit125)/*[position()=1]) 2019; 19 Chen (C8CS00921J-(cit19)/*[position()=1]) 2015; 15 Martynenko (C8CS00921J-(cit59)/*[position()=1]) 2017; 5 Kirakci (C8CS00921J-(cit99)/*[position()=1]) 2017; 56 Wang (C8CS00921J-(cit49)/*[position()=1]) 2014; 47 Wang (C8CS00921J-(cit147)/*[position()=1]) 2002; 102 Zhang (C8CS00921J-(cit85)/*[position()=1]) 2018; 107 Xue (C8CS00921J-(cit73)/*[position()=1]) 2017; 9 Fan (C8CS00921J-(cit148)/*[position()=1]) 2018; 57 Takizawa (C8CS00921J-(cit108)/*[position()=1]) 2011; 10 Conde (C8CS00921J-(cit77)/*[position()=1]) 2012; 2012 Evtushok (C8CS00921J-(cit98)/*[position()=1]) 2017; 46 Zhang (C8CS00921J-(cit195)/*[position()=1]) 2012; 12 Tu (C8CS00921J-(cit48)/*[position()=1]) 2014; 273 Jaque (C8CS00921J-(cit166)/*[position()=1]) 2014; 6 Liu (C8CS00921J-(cit159)/*[position()=1]) 2018; 6 Dong (C8CS00921J-(cit47)/*[position()=1]) 2015; 115 Song (C8CS00921J-(cit75)/*[position()=1]) 2017; 9 Tanabe (C8CS00921J-(cit12)/*[position()=1]) 2012; 23 Meng (C8CS00921J-(cit13)/*[position()=1]) 2018; 12 Fan (C8CS00921J-(cit126)/*[position()=1]) 2016; 45 Lan (C8CS00921J-(cit107)/*[position()=1]) 2017; 56 Chang (C8CS00921J-(cit88)/*[position()=1]) 2017; 11 Szabo (C8CS00921J-(cit141)/*[position()=1]) 2007; 6 Naczynski (C8CS00921J-(cit27)/*[position()=1]) 2015; 15 Shi (C8CS00921J-(cit51)/*[position()=1]) 2012; 22 De Ridder (C8CS00921J-(cit146)/*[position()=1]) 2008; 19 Sharma (C8CS00921J-(cit79)/*[position()=1]) 2015; 20 Low (C8CS00921J-(cit196)/*[position()=1]) 2007; 41 Ngwa (C8CS00921J-(cit78)/*[position()=1]) 2014; 9 Ni (C8CS00921J-(cit18)/*[position()=1]) 2018; 9 Yang (C8CS00921J-(cit62)/*[position()=1]) 2008; 72 Cheng (C8CS00921J-(cit23)/*[position()=1]) 2015; 9 Fan (C8CS00921J-(cit124)/*[position()=1]) 2019; 10 Zhang (C8CS00921J-(cit136)/*[position()=1]) 2015; 54 Wang (C8CS00921J-(cit105)/*[position()=1]) 2014; 136 Ou (C8CS00921J-(cit55)/*[position()=1]) 2018; 90 Cheng (C8CS00921J-(cit41)/*[position()=1]) 2018; 12 Hong (C8CS00921J-(cit205)/*[position()=1]) 2015; 115 Büchele (C8CS00921J-(cit68)/*[position()=1]) 2015; 9 Liu (C8CS00921J-(cit150)/*[position()=1]) 2017; 9 Liu (C8CS00921J-(cit158)/*[position()=1]) 2017; 27 Song (C8CS00921J-(cit117)/*[position()=1]) 2016; 26 Yang (C8CS00921J-(cit162)/*[position()=1]) 2013; 9 Wang (C8CS00921J-(cit71)/*[position()=1]) 2018; 14 Ni (C8CS00921J-(cit193)/*[position()=1]) 2018; 9 Padilla (C8CS00921J-(cit96)/*[position()=1]) 2016; 52 Bi (C8CS00921J-(cit84)/*[position()=1]) 2018; 30 Meng (C8CS00921J-(cit163)/*[position()=1]) 2012; 28 Liu (C8CS00921J-(cit64)/*[position()=1]) 2010; 6 Wei (C8CS00921J-(cit69)/*[position()=1]) 2017; 27 Hsu (C8CS00921J-(cit135)/*[position()=1]) 2018; 10 Maldiney (C8CS00921J-(cit72)/*[position()=1]) 2014; 13 Zhang (C8CS00921J-(cit155)/*[position()=1]) 2017; 138 Mellman (C8CS00921J-(cit179)/*[position()=1]) 2011; 480 Wang (C8CS00921J-(cit110)/*[position()=1]) 2018; 57 Sengar (C8CS00921J-(cit134)/*[position()=1]) 2018; 16 Song (C8CS00921J-(cit8)/*[position()=1]) 2016; 28 Pratx (C8CS00921J-(cit210)/*[position()=1]) 2010; 35 Guo (C8CS00921J-(cit38)/*[position()=1]) 2018; 10 Sharma (C8CS00921J-(cit187)/*[position()=1]) 2015; 348 Chen (C8CS00921J-(cit208)/*[position()=1]) 2014; 114 Sudheendra (C8CS00921J-(cit56)/*[position()=1]) 2014; 26 Yi (C8CS00921J-(cit121)/*[position()=1]) 2016; 9 Pratx (C8CS00921J-(cit211)/*[position()=1]) 2010; 29 Katz (C8CS00921J-(cit190)/*[position()=1]) 2008; 222 Wang (C8CS00921J-(cit129)/*[position()=1]) 2014; 6 Yu (C8CS00921J-(cit87)/*[position()=1]) 2016; 139 Song (C8CS00921J-(cit9)/*[position()=1]) 2016; 28 Wegner (C8CS00921J-(cit60)/*[position()=1]) 2015; 44 Lee (C8CS00921J-(cit213)/*[position()=1]) 2012; 41 Yao (C8CS00921J-(cit57)/*[position()=1]) 2017; 9 Heo (C8CS00921J-(c |
References_xml | – issn: 2018 publication-title: X-ray Nanochemistry: Concepts and Development doi: Guo – issn: 1994 publication-title: Techniques for Nuclear and Particle Physics Pxperiments: a How-to Approach doi: Leo – volume: 9 start-page: 2351 year: 2018 ident: C8CS00921J-(cit18)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-04703-w – volume: 5 start-page: 6701 year: 2017 ident: C8CS00921J-(cit59)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C7TB01425B – volume: 27 start-page: 1703832 year: 2017 ident: C8CS00921J-(cit158)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201703832 – volume: 64 start-page: 7985 year: 2004 ident: C8CS00921J-(cit181)/*[position()=1] publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-1525 – volume: 637 start-page: 012031 year: 2015 ident: C8CS00921J-(cit63)/*[position()=1] publication-title: J. Phys.: Conf. Ser. – volume: 26 start-page: 241 year: 2007 ident: C8CS00921J-(cit113)/*[position()=1] publication-title: Cancer Metastasis Rev. doi: 10.1007/s10555-007-9056-0 – volume: 102 start-page: 1091 year: 2002 ident: C8CS00921J-(cit147)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr000040l – volume: 28 start-page: 3724 year: 2007 ident: C8CS00921J-(cit115)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.04.032 – volume: 6 start-page: 9494 year: 2014 ident: C8CS00921J-(cit166)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR00708E – volume: 11 start-page: 3990 year: 2017 ident: C8CS00921J-(cit17)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b00476 – volume: 8 start-page: 306 year: 2018 ident: C8CS00921J-(cit170)/*[position()=1] publication-title: Nanomaterials doi: 10.3390/nano8050306 – volume: 138 start-page: 13 year: 2017 ident: C8CS00921J-(cit155)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.05.025 – volume: 34 start-page: 1604155 year: 2017 ident: C8CS00921J-(cit176)/*[position()=1] publication-title: Part. Part. Syst. Charact. – volume: 116 start-page: 12234 year: 2016 ident: C8CS00921J-(cit58)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00290 – volume: 15 start-page: 96 year: 2015 ident: C8CS00921J-(cit27)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl504123r – volume: 11 start-page: 5860 year: 2015 ident: C8CS00921J-(cit3)/*[position()=1] publication-title: Small doi: 10.1002/smll.201501923 – volume: 47 start-page: 1378 year: 2014 ident: C8CS00921J-(cit49)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar5000067 – volume: 222 start-page: 206 year: 2008 ident: C8CS00921J-(cit190)/*[position()=1] publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2008.00610.x – volume: 12 start-page: 3796 year: 2018 ident: C8CS00921J-(cit138)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b01010 – volume: 273 start-page: 13 year: 2014 ident: C8CS00921J-(cit48)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2013.11.017 – volume: 115 start-page: 11079 year: 2015 ident: C8CS00921J-(cit104)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00125 – volume: 140 start-page: 16971 year: 2018 ident: C8CS00921J-(cit106)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11593 – volume: 19 start-page: 1749 year: 2019 ident: C8CS00921J-(cit125)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04763 – volume: 29 start-page: 1701268 year: 2017 ident: C8CS00921J-(cit178)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201701268 – volume: 3 start-page: 463 year: 2015 ident: C8CS00921J-(cit33)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201400571 – volume: 29 start-page: 1992 year: 2010 ident: C8CS00921J-(cit211)/*[position()=1] publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2055883 – volume: 9 start-page: 2584 year: 2015 ident: C8CS00921J-(cit128)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn506107c – volume: 45 start-page: 6488 year: 2016 ident: C8CS00921J-(cit126)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00616G – volume: 9 start-page: 22132 year: 2017 ident: C8CS00921J-(cit73)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b03802 – volume: 51 start-page: R29 year: 2006 ident: C8CS00921J-(cit21)/*[position()=1] publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/51/13/R03 – volume: 8 start-page: 1824 year: 2018 ident: C8CS00921J-(cit112)/*[position()=1] publication-title: Theranostics doi: 10.7150/thno.22172 – volume: 105 start-page: 013702 year: 2014 ident: C8CS00921J-(cit74)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4890105 – volume: 4 start-page: 239 year: 2013 ident: C8CS00921J-(cit153)/*[position()=1] publication-title: Ther. Delivery doi: 10.4155/tde.12.147 – volume: 9 start-page: 2937 year: 2013 ident: C8CS00921J-(cit162)/*[position()=1] publication-title: Small doi: 10.1002/smll.201201765 – volume: 2012 start-page: 751075 year: 2012 ident: C8CS00921J-(cit77)/*[position()=1] publication-title: J. Drug Delivery doi: 10.1155/2012/751075 – volume: 7 start-page: 12261 year: 2015 ident: C8CS00921J-(cit133)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03067 – volume: 33 start-page: 941 year: 2015 ident: C8CS00921J-(cit154)/*[position()=1] publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3330 – volume: 28 start-page: 7143 year: 2016 ident: C8CS00921J-(cit8)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201602111 – volume: 15 start-page: 2249 year: 2015 ident: C8CS00921J-(cit19)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl504044p – volume: 12 start-page: 4946 year: 2018 ident: C8CS00921J-(cit41)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b02038 – volume: 9 start-page: 843 year: 2015 ident: C8CS00921J-(cit68)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.216 – volume: 44 start-page: 4743 year: 2015 ident: C8CS00921J-(cit207)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00392F – volume: 13 start-page: 418 year: 2014 ident: C8CS00921J-(cit72)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3908 – volume: 61 start-page: 250 year: 2011 ident: C8CS00921J-(cit127)/*[position()=1] publication-title: Ca-Cancer J. Clin. doi: 10.3322/caac.20114 – volume: 6 start-page: 1670 year: 2014 ident: C8CS00921J-(cit180)/*[position()=1] publication-title: Cancer doi: 10.3390/cancers6031670 – volume: 348 start-page: 56 year: 2015 ident: C8CS00921J-(cit187)/*[position()=1] publication-title: Science doi: 10.1126/science.aaa8172 – volume: 60 start-page: 977 year: 2008 ident: C8CS00921J-(cit30)/*[position()=1] publication-title: J. Pharm. Pharmacol. doi: 10.1211/jpp.60.8.0005 – volume: 30 start-page: 3301 year: 2018 ident: C8CS00921J-(cit84)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b00565 – volume: 9 start-page: 444 year: 2015 ident: C8CS00921J-(cit67)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.82 – volume: 116 start-page: 2826 year: 2016 ident: C8CS00921J-(cit212)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00148 – volume: 3 start-page: 3702 year: 2018 ident: C8CS00921J-(cit184)/*[position()=1] publication-title: ACS Omega doi: 10.1021/acsomega.8b00227 – volume: 9 start-page: 13364 year: 2017 ident: C8CS00921J-(cit57)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR05233B – volume: 90 start-page: 6992 year: 2018 ident: C8CS00921J-(cit55)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b01315 – volume: 28 start-page: 1707140 year: 2018 ident: C8CS00921J-(cit119)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707140 – volume: 60 start-page: 468 year: 1996 ident: C8CS00921J-(cit183)/*[position()=1] publication-title: Gynecol. Oncol. doi: 10.1006/gyno.1996.0075 – volume: 139 start-page: 180 year: 2016 ident: C8CS00921J-(cit87)/*[position()=1] publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2015.11.063 – volume: 25 start-page: 2641 year: 2013 ident: C8CS00921J-(cit2)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201300081 – volume: 44 start-page: 4792 year: 2015 ident: C8CS00921J-(cit60)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00532E – volume: 121 start-page: 130 year: 2017 ident: C8CS00921J-(cit156)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.01.001 – volume: 9 start-page: 279 year: 2017 ident: C8CS00921J-(cit175)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15183 – volume: 161 start-page: 279 year: 2018 ident: C8CS00921J-(cit83)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.01.047 – volume: 67 start-page: 65 year: 2017 ident: C8CS00921J-(cit5)/*[position()=1] publication-title: Ca-Cancer J. Clin. doi: 10.3322/caac.21358 – volume: 37 start-page: 4011 year: 2010 ident: C8CS00921J-(cit53)/*[position()=1] publication-title: Med. Phys. doi: 10.1118/1.3457332 – volume: 27 start-page: 1703535 year: 2017 ident: C8CS00921J-(cit69)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201703535 – volume: 22 start-page: 23461 year: 2012 ident: C8CS00921J-(cit51)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm34950g – volume: 10 start-page: 2536 year: 2016 ident: C8CS00921J-(cit82)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b07473 – volume: 14 start-page: 1803156 year: 2018 ident: C8CS00921J-(cit71)/*[position()=1] publication-title: Small doi: 10.1002/smll.201803156 – volume: 28 start-page: 1802159 year: 2018 ident: C8CS00921J-(cit160)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802159 – volume: 39 start-page: 737 year: 1997 ident: C8CS00921J-(cit182)/*[position()=1] publication-title: Int. J. Radiat. Oncol., Biol., Phys. doi: 10.1016/S0360-3016(97)00372-6 – volume: 8 start-page: 401 year: 2018 ident: C8CS00921J-(cit167)/*[position()=1] publication-title: Nanomaterials doi: 10.3390/nano8060401 – volume: 140 start-page: 5890 year: 2018 ident: C8CS00921J-(cit214)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00368 – volume: 54 start-page: 8579 year: 2018 ident: C8CS00921J-(cit92)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC04653K – volume: 11 start-page: 4445 year: 2015 ident: C8CS00921J-(cit24)/*[position()=1] publication-title: Small doi: 10.1002/smll.201500735 – volume: 28 start-page: 1704623 year: 2018 ident: C8CS00921J-(cit198)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704623 – volume: 10 start-page: 17071 year: 2018 ident: C8CS00921J-(cit152)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b03660 – volume: 44 start-page: 322 year: 2011 ident: C8CS00921J-(cit50)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar100129p – volume: 97 start-page: 1595 year: 2014 ident: C8CS00921J-(cit52)/*[position()=1] publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.12788 – volume: 12 start-page: 4012 year: 2012 ident: C8CS00921J-(cit195)/*[position()=1] publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2012.6160 – volume: 16 start-page: 19 year: 2018 ident: C8CS00921J-(cit134)/*[position()=1] publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-018-0344-3 – volume: 115 start-page: 10725 year: 2015 ident: C8CS00921J-(cit47)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00091 – volume: 30 start-page: 1801743 year: 2018 ident: C8CS00921J-(cit66)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201801743 – volume: 41 start-page: 120 year: 2007 ident: C8CS00921J-(cit196)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar7000815 – volume: 107 start-page: 1135 year: 2018 ident: C8CS00921J-(cit85)/*[position()=1] publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2018.08.074 – volume: 15 start-page: 409 year: 2015 ident: C8CS00921J-(cit116)/*[position()=1] publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3958 – volume: 18 start-page: 1196 year: 2018 ident: C8CS00921J-(cit201)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b04741 – volume: 119 start-page: 9496 year: 2015 ident: C8CS00921J-(cit94)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.5b01752 – volume: 288 start-page: 481 year: 1991 ident: C8CS00921J-(cit145)/*[position()=1] publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(91)90224-7 – volume: 6 start-page: 4301 year: 2018 ident: C8CS00921J-(cit100)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C8TB00893K – volume: 9 start-page: 3267 year: 2016 ident: C8CS00921J-(cit121)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-016-1205-8 – volume: 12 start-page: 5684 year: 2018 ident: C8CS00921J-(cit122)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b01508 – volume: 135 start-page: 13041 year: 2013 ident: C8CS00921J-(cit169)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja404985w – volume: 9 start-page: 8229 year: 2017 ident: C8CS00921J-(cit173)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR02213A – volume: 70 start-page: 045313 year: 2004 ident: C8CS00921J-(cit35)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.70.045313 – volume: 3 start-page: 116 year: 2008 ident: C8CS00921J-(cit32)/*[position()=1] publication-title: Nanobiotechnology doi: 10.1007/s12030-008-9009-x – volume: 11 start-page: 10012 year: 2017 ident: C8CS00921J-(cit89)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b04230 – volume: 114 start-page: 5161 year: 2014 ident: C8CS00921J-(cit208)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr400425h – volume: 30 start-page: 8562 year: 2018 ident: C8CS00921J-(cit65)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03587 – volume: 28 start-page: 319 year: 2012 ident: C8CS00921J-(cit163)/*[position()=1] publication-title: Chem. Res. Chin. Univ. – volume: 31 start-page: 359 year: 2015 ident: C8CS00921J-(cit164)/*[position()=1] publication-title: Int. J. Hyperthermia doi: 10.3109/02656736.2015.1005178 – volume: 49 start-page: 4319 year: 2013 ident: C8CS00921J-(cit46)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c2cc37169c – volume: 144 start-page: 13 year: 2015 ident: C8CS00921J-(cit97)/*[position()=1] publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2014.12.016 – volume: 131 start-page: 2039 year: 2019 ident: C8CS00921J-(cit39)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201812272 – volume: 50 start-page: 3549 year: 2014 ident: C8CS00921J-(cit81)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C3CC48661C – volume: 28 start-page: 2716 year: 2016 ident: C8CS00921J-(cit9)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201504617 – volume: 87 start-page: 315 year: 2007 ident: C8CS00921J-(cit144)/*[position()=1] publication-title: Physiol. Rev. doi: 10.1152/physrev.00029.2006 – volume: 29 start-page: 1606681 year: 2017 ident: C8CS00921J-(cit80)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201606681 – volume: 10 start-page: 11145 year: 2016 ident: C8CS00921J-(cit165)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b06067 – volume: 10 start-page: 342 year: 2017 ident: C8CS00921J-(cit28)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR02926H – volume: 55 start-page: 803 year: 2016 ident: C8CS00921J-(cit36)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b02282 – volume: 12 start-page: 5069 year: 2017 ident: C8CS00921J-(cit197)/*[position()=1] publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S137833 – volume: 29 start-page: 1603997 year: 2017 ident: C8CS00921J-(cit199)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201603997 – volume: 19 start-page: 164 year: 2008 ident: C8CS00921J-(cit146)/*[position()=1] publication-title: Nitric oxide doi: 10.1016/j.niox.2008.04.015 – volume: 9 start-page: 39985 year: 2017 ident: C8CS00921J-(cit25)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b11295 – volume: 30 start-page: 1707634 year: 2018 ident: C8CS00921J-(cit101)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201707634 – year: 2019 ident: C8CS00921J-(cit42)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.9b01818 – volume: 11 start-page: 4848 year: 2017 ident: C8CS00921J-(cit88)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b01346 – volume: 6 start-page: 1159 year: 2006 ident: C8CS00921J-(cit132)/*[position()=1] publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2006.327 – volume: 79 start-page: 1222 year: 1996 ident: C8CS00921J-(cit109)/*[position()=1] publication-title: Helv. Chim. Acta doi: 10.1002/hlca.19960790428 – volume: 45 start-page: 6597 year: 2016 ident: C8CS00921J-(cit120)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00271D – volume: 6 start-page: 8274 year: 2014 ident: C8CS00921J-(cit129)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c4nr01826e – volume: 10 start-page: 895 year: 2011 ident: C8CS00921J-(cit108)/*[position()=1] publication-title: Photochem. Photobiol. Sci. doi: 10.1039/c0pp00265h – volume: 12 start-page: 1580 year: 2018 ident: C8CS00921J-(cit123)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b08103 – volume: 9 start-page: 41181 year: 2017 ident: C8CS00921J-(cit76)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b13920 – volume: 7 start-page: 1800643 year: 2018 ident: C8CS00921J-(cit90)/*[position()=1] publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201800643 – volume: 60 start-page: 1600 year: 2008 ident: C8CS00921J-(cit10)/*[position()=1] publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2008.08.004 – volume: 8 start-page: 10537 year: 2014 ident: C8CS00921J-(cit44)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn503973z – volume: 561 start-page: 88 year: 2018 ident: C8CS00921J-(cit37)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-018-0451-1 – volume: 18 start-page: 313 year: 2018 ident: C8CS00921J-(cit189)/*[position()=1] publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2018.6 – volume: 39 start-page: 24 year: 2018 ident: C8CS00921J-(cit6)/*[position()=1] publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2017.11.003 – volume: 18 start-page: 6778 year: 2018 ident: C8CS00921J-(cit215)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b02639 – volume: 6 start-page: 1087 year: 2010 ident: C8CS00921J-(cit64)/*[position()=1] publication-title: Small doi: 10.1002/smll.200902408 – volume: 17 start-page: R37 year: 2006 ident: C8CS00921J-(cit34)/*[position()=1] publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/17/4/R01 – volume: 18 start-page: 6360 year: 2018 ident: C8CS00921J-(cit185)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b02720 – volume: 57 start-page: 8463 year: 2018 ident: C8CS00921J-(cit11)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201802351 – volume: 11 start-page: 10159 year: 2017 ident: C8CS00921J-(cit192)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b04737 – volume: 11 start-page: 5633 year: 2017 ident: C8CS00921J-(cit216)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b01032 – volume: 46 start-page: 11738 year: 2017 ident: C8CS00921J-(cit98)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C7DT01919J – volume: 28 start-page: 5072 year: 2016 ident: C8CS00921J-(cit118)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201506428 – volume: 9 start-page: 14627 year: 2017 ident: C8CS00921J-(cit150)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR04684G – volume: 480 start-page: 480 year: 2011 ident: C8CS00921J-(cit179)/*[position()=1] publication-title: Nature doi: 10.1038/nature10673 – volume: 10 start-page: 3918 year: 2016 ident: C8CS00921J-(cit29)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b01401 – volume: 28 start-page: 1707496 year: 2018 ident: C8CS00921J-(cit14)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707496 – volume: 245 start-page: 1701 year: 2008 ident: C8CS00921J-(cit31)/*[position()=1] publication-title: Phys. Status Solidi B doi: 10.1002/pssb.200844039 – volume: 9 start-page: 2926 year: 2018 ident: C8CS00921J-(cit43)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C8PY00192H – volume: 27 start-page: 1701388 year: 2017 ident: C8CS00921J-(cit91)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201701388 – volume: 8 start-page: 5870 year: 2018 ident: C8CS00921J-(cit20)/*[position()=1] publication-title: Theranostics doi: 10.7150/thno.27351 – volume: 56 start-page: 7500 year: 2017 ident: C8CS00921J-(cit111)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201700919 – volume: 41 start-page: 2656 year: 2012 ident: C8CS00921J-(cit213)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS15261D – volume: 140 start-page: 12010 year: 2018 ident: C8CS00921J-(cit200)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05817 – volume: 14 start-page: 1159 year: 2018 ident: C8CS00921J-(cit171)/*[position()=1] publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2018.2553 – volume: 115 start-page: 10816 year: 2015 ident: C8CS00921J-(cit205)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00008 – volume: 27 start-page: 450 year: 2015 ident: C8CS00921J-(cit186)/*[position()=1] publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.03.001 – volume: 56 start-page: 13356 year: 2017 ident: C8CS00921J-(cit204)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201707819 – volume: 41 start-page: 1323 year: 2012 ident: C8CS00921J-(cit209)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15187H – volume: 28 start-page: 12879 year: 2012 ident: C8CS00921J-(cit139)/*[position()=1] publication-title: Langmuir doi: 10.1021/la302357h – volume: 54 start-page: 14026 year: 2015 ident: C8CS00921J-(cit149)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201504536 – volume: 6 start-page: 662 year: 2007 ident: C8CS00921J-(cit141)/*[position()=1] publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd2222 – volume: 8 start-page: 723 year: 2014 ident: C8CS00921J-(cit130)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2014.166 – volume: 56 start-page: 4610 year: 2017 ident: C8CS00921J-(cit99)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b00240 – volume: 12 start-page: 252 year: 2012 ident: C8CS00921J-(cit188)/*[position()=1] publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3239 – volume: 2 start-page: 7449 year: 2014 ident: C8CS00921J-(cit140)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C4TB01340A – volume: 28 start-page: 8950 year: 2016 ident: C8CS00921J-(cit161)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201603114 – volume: 9 start-page: 1063 year: 2014 ident: C8CS00921J-(cit78)/*[position()=1] publication-title: Nanomedicine doi: 10.2217/nnm.14.55 – volume: 4 start-page: 773 year: 2011 ident: C8CS00921J-(cit131)/*[position()=1] publication-title: J. Biophotonics doi: 10.1002/jbio.201100062 – volume: 136 start-page: 6171 year: 2014 ident: C8CS00921J-(cit105)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500671h – volume-title: Techniques for Nuclear and Particle Physics Pxperiments: a How-to Approach year: 1994 ident: C8CS00921J-(cit45)/*[position()=1] doi: 10.1007/978-3-642-57920-2 – volume: 11 start-page: 7164 year: 2017 ident: C8CS00921J-(cit93)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b03037 – volume: 47 start-page: 4258 year: 2018 ident: C8CS00921J-(cit206)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00234G – volume: 9 start-page: 11090 year: 2015 ident: C8CS00921J-(cit23)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b04606 – volume: 136 start-page: 16712 year: 2014 ident: C8CS00921J-(cit103)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja508679h – volume: 12 start-page: 12401 year: 2018 ident: C8CS00921J-(cit86)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b06483 – volume: 57 start-page: 8383 year: 2018 ident: C8CS00921J-(cit148)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201800594 – volume: 30 start-page: 1804046 year: 2018 ident: C8CS00921J-(cit151)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201804046 – volume: 189 start-page: 11 year: 2019 ident: C8CS00921J-(cit40)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.10.016 – volume: 23 start-page: 1909 year: 2012 ident: C8CS00921J-(cit12)/*[position()=1] publication-title: Bioconjugate Chem. doi: 10.1021/bc3002985 – volume: 9 start-page: 2718 year: 2017 ident: C8CS00921J-(cit75)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR09553D – volume: 118 start-page: 1338 year: 2018 ident: C8CS00921J-(cit143)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00568 – volume: 10 start-page: 1607 year: 2018 ident: C8CS00921J-(cit38)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR06405E – volume: 23 start-page: H195 year: 2011 ident: C8CS00921J-(cit26)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201100919 – volume: 10 start-page: 22533 year: 2018 ident: C8CS00921J-(cit54)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR06867D – volume: 26 start-page: 8243 year: 2016 ident: C8CS00921J-(cit117)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201603845 – volume: 54 start-page: 1770 year: 2015 ident: C8CS00921J-(cit136)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201408472 – volume: 26 start-page: 5335 year: 2016 ident: C8CS00921J-(cit177)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601341 – volume: 27 start-page: 1604382 year: 2017 ident: C8CS00921J-(cit70)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604382 – volume: 13 start-page: 3553 year: 2018 ident: C8CS00921J-(cit16)/*[position()=1] publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S164967 – volume: 117 start-page: 21583 year: 2013 ident: C8CS00921J-(cit15)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp4077189 – volume: 12 start-page: 311 year: 2002 ident: C8CS00921J-(cit142)/*[position()=1] publication-title: Cell Res. doi: 10.1038/sj.cr.7290133 – volume: 29 start-page: 1700996 year: 2017 ident: C8CS00921J-(cit7)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201700996 – volume: 52 start-page: 2705 year: 2016 ident: C8CS00921J-(cit96)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC08682E – volume: 56 start-page: 12102 year: 2017 ident: C8CS00921J-(cit107)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201704828 – volume: 13 start-page: 1602869 year: 2017 ident: C8CS00921J-(cit157)/*[position()=1] publication-title: Small doi: 10.1002/smll.201602869 – volume: 12 start-page: 8308 year: 2018 ident: C8CS00921J-(cit13)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b03590 – volume: 10 start-page: 31106 year: 2018 ident: C8CS00921J-(cit22)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b11507 – volume: 10 start-page: 7859 year: 2018 ident: C8CS00921J-(cit135)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00015 – volume: 4 start-page: 81 year: 2013 ident: C8CS00921J-(cit194)/*[position()=1] publication-title: Theranostics doi: 10.7150/thno.7193 – volume-title: X-ray Nanochemistry: Concepts and Development year: 2018 ident: C8CS00921J-(cit4)/*[position()=1] doi: 10.1007/978-3-319-78004-7 – volume: 9 start-page: 14364 year: 2017 ident: C8CS00921J-(cit172)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR02384G – volume: 6 start-page: 4756 year: 2018 ident: C8CS00921J-(cit159)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C8TB01398E – volume: 20 start-page: 1143 year: 2015 ident: C8CS00921J-(cit79)/*[position()=1] publication-title: Drug Discovery Today doi: 10.1016/j.drudis.2015.05.009 – volume: 113 start-page: 1641 year: 2013 ident: C8CS00921J-(cit1)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200358s – volume: 72 start-page: 633 year: 2008 ident: C8CS00921J-(cit62)/*[position()=1] publication-title: Int. J. Radiat. Oncol., Biol., Phys. doi: 10.1016/j.ijrobp.2008.06.1916 – volume: 98 start-page: 181914 year: 2011 ident: C8CS00921J-(cit61)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3589366 – volume: 138 start-page: 10968 year: 2016 ident: C8CS00921J-(cit95)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05302 – volume: 8 start-page: 1492 year: 2008 ident: C8CS00921J-(cit168)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl080496z – volume: 35 start-page: 3345 year: 2010 ident: C8CS00921J-(cit210)/*[position()=1] publication-title: Opt. Lett. doi: 10.1364/OL.35.003345 – volume: 26 start-page: 1881 year: 2014 ident: C8CS00921J-(cit56)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm404044n – volume: 23 start-page: 45 year: 2018 ident: C8CS00921J-(cit114)/*[position()=1] publication-title: Colloid Interface Sci. Commun. doi: 10.1016/j.colcom.2018.01.004 – volume: 18 start-page: 1582 year: 2018 ident: C8CS00921J-(cit202)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b03813 – volume: 135 start-page: 13620 year: 2013 ident: C8CS00921J-(cit203)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405196f – volume: 10 start-page: 1241 year: 2019 ident: C8CS00921J-(cit124)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-09158-1 – volume: 9 start-page: 4321 year: 2018 ident: C8CS00921J-(cit193)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-06655-7 – volume: 2 start-page: 600 year: 2018 ident: C8CS00921J-(cit191)/*[position()=1] publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0203-4 – volume: 29 start-page: 1606134 year: 2017 ident: C8CS00921J-(cit102)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201606134 – volume: 45 start-page: 263001 year: 2012 ident: C8CS00921J-(cit137)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/45/26/263001 – volume: 57 start-page: 7883 year: 2018 ident: C8CS00921J-(cit110)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201802865 – volume: 9 start-page: 12451 year: 2015 ident: C8CS00921J-(cit174)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b05825 |
SSID | ssj0011762 |
Score | 2.6671538 |
SecondaryResourceType | review_article |
Snippet | X-rays are widely applied in clinical medical facilities for radiotherapy (RT) and biomedical imaging. However, the sole use of X-rays for cancer treatment... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 373 |
SubjectTerms | adverse effects Attenuation coefficients Biomedical materials Body parts Cancer Cancer therapies Contrast agents energy image analysis Light sources Materials science Medical imaging Nanotechnology neoplasms Organs Penetration depth Radiation therapy Reagents Side effects tissues Tumors X-radiation X-rays |
Title | X-ray-activated nanosystems for theranostic applications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31106315 https://www.proquest.com/docview/2234559721 https://www.proquest.com/docview/2232071824 https://www.proquest.com/docview/2286909679 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagPcCl4lXYUlAQXBBK2diOH8dqtdVSLeVAVlpOkeO1yyKUVPtAKr-ecWInga5Q4RJFY8uK_DnjGY_nG4TeaJPyQqYanBxpY2rMMBaKJrGSlDOqFkzWNSM_XrDJjJ7P03mo4e6zSzbFif65M6_kf1AFGeDqsmT_Adl2UBDAO-ALT0AYnrfCeB6v1HXsUhN-KGc5lqqsGmrmdbg-uHKimpS1F6nuW6QtY0C4v-n5Sbu4f6OY5ktVWeP3OXckE-7yLotluavz9bZbeF_8qfQEZJdfVdU_a3DpTSxuqgN79UjZMKa8YWwM-pOK_jpJ3l2dOL0Byt2fUjSa0cl6u2xovaHBh8QRoGqh144OKvnW7VMhNn_xKT-bTad5Np5nd9E-Bv8AFNz-6Tj7MG0DSAmva8m2HxyYaYl83439uy1yw8EAc2MVysDU5kb2AB14PyE6bUB_iO6Y8hG6Nwrl-R4j8Qf4UQ_8CMCPeuBHffCfoNnZOBtNYl8GI9aUsE1sBdaOg0gy8F3TIdYyVUpqTbXh6YJhTRSRC1vgAg8FxYWVxBJqubVCCW0VOUR7ZVWaZyiimnOWFKCnraEiZZLD7sYSK5kxhFM8QG_DhOTac8S7UiXf8_quApH5SIw-15N3PkCv275XDTPKzl7HYV5z_-esczBJqfNkcTJAr9pmmD8XrFKlqbZ1Hwzmr8D0b31cPTXJuBygpw1m7acQsGsZSdIBOgQQW3EH_tEthn2O7ne_wTHa26y25gUYoZvipV9wvwAaLIcX |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=X-ray-activated+nanosystems+for+theranostic+applications&rft.jtitle=Chemical+Society+reviews&rft.au=Chen%2C+Xiaofeng&rft.au=Song%2C+Jibin&rft.au=Chen%2C+Xiaoyuan&rft.au=Yang%2C+Huanghao&rft.date=2019-06-04&rft.issn=1460-4744&rft.volume=48&rft.issue=11+p.3073-3101&rft.spage=3073&rft.epage=3101&rft_id=info:doi/10.1039%2Fc8cs00921j&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |