Identification of glaucoma-related visual field abnormality with the screening protocol of frequency doubling technology

Purpose: To evaluate the predictive power of frequency doubling technology to distinguish glaucoma suspects from persons with glaucoma visual field loss. Methods: A consecutive series of 76 subjects referred to a glaucoma service underwent perimetry in one eye with frequency doubling technology in a...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of ophthalmology Vol. 125; no. 6; pp. 819 - 829
Main Author Quigley, Harry A
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 01.06.1998
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose: To evaluate the predictive power of frequency doubling technology to distinguish glaucoma suspects from persons with glaucoma visual field loss. Methods: A consecutive series of 76 subjects referred to a glaucoma service underwent perimetry in one eye with frequency doubling technology in a screening mode and Humphrey 24-2 threshold testing in random order, and had optic disk and clinical nerve fiber layer grading. Results: All subjects performed perimetry with both instruments satisfactorily, with an average test time of 1.8 ± 0.7 minutes per eye for the frequency doubling technology (instrument time). Of 33 eyes classified as abnormal by glaucoma hemifield test, 91% (30/33) were abnormal on frequency doubling technology (two or more abnormal locations of 17), whereas 94% (31/33) of glaucoma suspects with normal Humphrey fields had normal results with frequency doubling technology. Frequency doubling technology results were highly correlated with Humphrey mean deviation by linear regression ( r 2 = .74, P = .047) and with corrected pattern standard deviation probability value. A frequency doubling technology error score for each quadrant of the field was highly correlated with the number of severely abnormal points per quadrant in Humphrey threshold tests ( r 2 = .63, P = .034). There was close agreement between clinical examination of the optic disk and nerve fiber layer and frequency doubling technology results. Three-level quantification of abnormality in frequency doubling technology results did not add to diagnostic accuracy. Conclusion: Frequency doubling technology testing shows promise as a screening method in glaucoma.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-9394
1879-1891
DOI:10.1016/S0002-9394(98)00046-4