Functional metal-organic frameworks as effective sensors of gases and volatile compounds
Developing efficient sensor materials with superior performance for selective, fast and sensitive detection of gases and volatile organic compounds (VOCs) is essential for human health and environmental protection, through monitoring indoor and outdoor air pollutions, managing industrial processes,...
Saved in:
Published in | Chemical Society reviews Vol. 49; no. 17; pp. 6364 - 641 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Royal Society of Chemistry
07.09.2020
Royal Society of Chemistry (RSC) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing efficient sensor materials with superior performance for selective, fast and sensitive detection of gases and volatile organic compounds (VOCs) is essential for human health and environmental protection, through monitoring indoor and outdoor air pollutions, managing industrial processes, controlling food quality and assisting early diagnosis of diseases. Metal-organic frameworks (MOFs) are a unique type of crystalline and porous solid material constructed from metal nodes (metal ions or clusters) and functional organic ligands. They have been investigated extensively for possible use as high performance sensors for the detection of many different gases and VOCs in recent years, due to their large surface area, tunable pore size, functionalizable sites and intriguing properties, such as electrical conductivity, magnetism, ferroelectricity, luminescence and chromism. The high porosity of MOFs allows them to interact strongly with various analytes, including gases and VOCs, thus resulting in easily measurable responses to different physicochemical parameters. Although much of the recent work on MOF-based luminescent sensors have been summarized in several excellent reviews (up to 2018), a comprehensive overview of these materials for sensing gases and VOCs based on chemiresistive, magnetic, ferroelectric, and colorimertic mechanisms is missing. In this review, we highlight the most recent progress in developing MOF sensing and switching materials with an emphasis on sensing mechanisms based on electricity, magnetism, ferroelectricity and chromism. We provide a comprehensive analysis on the MOF-analyte interactions in these processes, which play a key role in the sensing performance of the MOF-based sensors and switches. We discuss in detail possible applications of MOF-based sensing and switching materials in detecting oxygen, water vapor, toxic industrial gases (such as hydrogen sulfide, ammonia, sulfur dioxide, nitrous oxide, carbon oxides and carbon disulfide) and VOCs (such as aromatic and aliphatic hydrocarbons, ketones, alcohols, aldehydes, chlorinated hydrocarbons and
N
,
N
′-dimethylformamide). Overall, this review serves as a timely source of information and provides insight for the future development of advanced MOF materials as next-generation gas and VOC sensors.
This review summarizes the recent advances of metal organic framework (MOF) based sensing of gases and volatile compounds. |
---|---|
AbstractList | Developing efficient sensor materials with superior performance for selective, fast and sensitive detection of gases and volatile organic compounds (VOCs) is essential for human health and environmental protection, through monitoring indoor and outdoor air pollutions, managing industrial processes, controlling food quality and assisting early diagnosis of diseases. Metal–organic frameworks (MOFs) are a unique type of crystalline and porous solid material constructed from metal nodes (metal ions or clusters) and functional organic ligands. They have been investigated extensively for possible use as high performance sensors for the detection of many different gases and VOCs in recent years, due to their large surface area, tunable pore size, functionalizable sites and intriguing properties, such as electrical conductivity, magnetism, ferroelectricity, luminescence and chromism. The high porosity of MOFs allows them to interact strongly with various analytes, including gases and VOCs, thus resulting in easily measurable responses to different physicochemical parameters. Although much of the recent work on MOF-based luminescent sensors have been summarized in several excellent reviews (up to 2018), a comprehensive overview of these materials for sensing gases and VOCs based on chemiresistive, magnetic, ferroelectric, and colorimertic mechanisms is missing. In this review, we highlight the most recent progress in developing MOF sensing and switching materials with an emphasis on sensing mechanisms based on electricity, magnetism, ferroelectricity and chromism. We provide a comprehensive analysis on the MOF–analyte interactions in these processes, which play a key role in the sensing performance of the MOF-based sensors and switches. We discuss in detail possible applications of MOF-based sensing and switching materials in detecting oxygen, water vapor, toxic industrial gases (such as hydrogen sulfide, ammonia, sulfur dioxide, nitrous oxide, carbon oxides and carbon disulfide) and VOCs (such as aromatic and aliphatic hydrocarbons, ketones, alcohols, aldehydes, chlorinated hydrocarbons and N,N′-dimethylformamide). Overall, this review serves as a timely source of information and provides insight for the future development of advanced MOF materials as next-generation gas and VOC sensors. Developing efficient sensor materials with superior performance for selective, fast and sensitive detection of gases and volatile organic compounds (VOCs) is essential for human health and environmental protection, through monitoring indoor and outdoor air pollutions, managing industrial processes, controlling food quality and assisting early diagnosis of diseases. Metal-organic frameworks (MOFs) are a unique type of crystalline and porous solid material constructed from metal nodes (metal ions or clusters) and functional organic ligands. They have been investigated extensively for possible use as high performance sensors for the detection of many different gases and VOCs in recent years, due to their large surface area, tunable pore size, functionalizable sites and intriguing properties, such as electrical conductivity, magnetism, ferroelectricity, luminescence and chromism. The high porosity of MOFs allows them to interact strongly with various analytes, including gases and VOCs, thus resulting in easily measurable responses to different physicochemical parameters. Although much of the recent work on MOF-based luminescent sensors have been summarized in several excellent reviews (up to 2018), a comprehensive overview of these materials for sensing gases and VOCs based on chemiresistive, magnetic, ferroelectric, and colorimertic mechanisms is missing. In this review, we highlight the most recent progress in developing MOF sensing and switching materials with an emphasis on sensing mechanisms based on electricity, magnetism, ferroelectricity and chromism. We provide a comprehensive analysis on the MOF-analyte interactions in these processes, which play a key role in the sensing performance of the MOF-based sensors and switches. We discuss in detail possible applications of MOF-based sensing and switching materials in detecting oxygen, water vapor, toxic industrial gases (such as hydrogen sulfide, ammonia, sulfur dioxide, nitrous oxide, carbon oxides and carbon disulfide) and VOCs (such as aromatic and aliphatic hydrocarbons, ketones, alcohols, aldehydes, chlorinated hydrocarbons and N,N'-dimethylformamide). Overall, this review serves as a timely source of information and provides insight for the future development of advanced MOF materials as next-generation gas and VOC sensors.Developing efficient sensor materials with superior performance for selective, fast and sensitive detection of gases and volatile organic compounds (VOCs) is essential for human health and environmental protection, through monitoring indoor and outdoor air pollutions, managing industrial processes, controlling food quality and assisting early diagnosis of diseases. Metal-organic frameworks (MOFs) are a unique type of crystalline and porous solid material constructed from metal nodes (metal ions or clusters) and functional organic ligands. They have been investigated extensively for possible use as high performance sensors for the detection of many different gases and VOCs in recent years, due to their large surface area, tunable pore size, functionalizable sites and intriguing properties, such as electrical conductivity, magnetism, ferroelectricity, luminescence and chromism. The high porosity of MOFs allows them to interact strongly with various analytes, including gases and VOCs, thus resulting in easily measurable responses to different physicochemical parameters. Although much of the recent work on MOF-based luminescent sensors have been summarized in several excellent reviews (up to 2018), a comprehensive overview of these materials for sensing gases and VOCs based on chemiresistive, magnetic, ferroelectric, and colorimertic mechanisms is missing. In this review, we highlight the most recent progress in developing MOF sensing and switching materials with an emphasis on sensing mechanisms based on electricity, magnetism, ferroelectricity and chromism. We provide a comprehensive analysis on the MOF-analyte interactions in these processes, which play a key role in the sensing performance of the MOF-based sensors and switches. We discuss in detail possible applications of MOF-based sensing and switching materials in detecting oxygen, water vapor, toxic industrial gases (such as hydrogen sulfide, ammonia, sulfur dioxide, nitrous oxide, carbon oxides and carbon disulfide) and VOCs (such as aromatic and aliphatic hydrocarbons, ketones, alcohols, aldehydes, chlorinated hydrocarbons and N,N'-dimethylformamide). Overall, this review serves as a timely source of information and provides insight for the future development of advanced MOF materials as next-generation gas and VOC sensors. This review summarizes the recent advances of metal organic framework (MOF) based sensing of gases and volatile compounds. Developing efficient sensor materials with superior performance for selective, fast and sensitive detection of gases and volatile organic compounds (VOCs) is essential for human health and environmental protection, through monitoring indoor and outdoor air pollutions, managing industrial processes, controlling food quality and assisting early diagnosis of diseases. Metal–organic frameworks (MOFs) are a unique type of crystalline and porous solid material constructed from metal nodes (metal ions or clusters) and functional organic ligands. They have been investigated extensively for possible use as high performance sensors for the detection of many different gases and VOCs in recent years, due to their large surface area, tunable pore size, functionalizable sites and intriguing properties, such as electrical conductivity, magnetism, ferroelectricity, luminescence and chromism. The high porosity of MOFs allows them to interact strongly with various analytes, including gases and VOCs, thus resulting in easily measurable responses to different physicochemical parameters. Although much of the recent work on MOF-based luminescent sensors have been summarized in several excellent reviews (up to 2018), a comprehensive overview of these materials for sensing gases and VOCs based on chemiresistive, magnetic, ferroelectric, and colorimertic mechanisms is missing. In this review, we highlight the most recent progress in developing MOF sensing and switching materials with an emphasis on sensing mechanisms based on electricity, magnetism, ferroelectricity and chromism. We provide a comprehensive analysis on the MOF–analyte interactions in these processes, which play a key role in the sensing performance of the MOF-based sensors and switches. We discuss in detail possible applications of MOF-based sensing and switching materials in detecting oxygen, water vapor, toxic industrial gases (such as hydrogen sulfide, ammonia, sulfur dioxide, nitrous oxide, carbon oxides and carbon disulfide) and VOCs (such as aromatic and aliphatic hydrocarbons, ketones, alcohols, aldehydes, chlorinated hydrocarbons and N , N ′-dimethylformamide). Overall, this review serves as a timely source of information and provides insight for the future development of advanced MOF materials as next-generation gas and VOC sensors. Developing efficient sensor materials with superior performance for selective, fast and sensitive detection of gases and volatile organic compounds (VOCs) is essential for human health and environmental protection, through monitoring indoor and outdoor air pollutions, managing industrial processes, controlling food quality and assisting early diagnosis of diseases. Metal-organic frameworks (MOFs) are a unique type of crystalline and porous solid material constructed from metal nodes (metal ions or clusters) and functional organic ligands. They have been investigated extensively for possible use as high performance sensors for the detection of many different gases and VOCs in recent years, due to their large surface area, tunable pore size, functionalizable sites and intriguing properties, such as electrical conductivity, magnetism, ferroelectricity, luminescence and chromism. The high porosity of MOFs allows them to interact strongly with various analytes, including gases and VOCs, thus resulting in easily measurable responses to different physicochemical parameters. Although much of the recent work on MOF-based luminescent sensors have been summarized in several excellent reviews (up to 2018), a comprehensive overview of these materials for sensing gases and VOCs based on chemiresistive, magnetic, ferroelectric, and colorimertic mechanisms is missing. In this review, we highlight the most recent progress in developing MOF sensing and switching materials with an emphasis on sensing mechanisms based on electricity, magnetism, ferroelectricity and chromism. We provide a comprehensive analysis on the MOF-analyte interactions in these processes, which play a key role in the sensing performance of the MOF-based sensors and switches. We discuss in detail possible applications of MOF-based sensing and switching materials in detecting oxygen, water vapor, toxic industrial gases (such as hydrogen sulfide, ammonia, sulfur dioxide, nitrous oxide, carbon oxides and carbon disulfide) and VOCs (such as aromatic and aliphatic hydrocarbons, ketones, alcohols, aldehydes, chlorinated hydrocarbons and N , N ′-dimethylformamide). Overall, this review serves as a timely source of information and provides insight for the future development of advanced MOF materials as next-generation gas and VOC sensors. This review summarizes the recent advances of metal organic framework (MOF) based sensing of gases and volatile compounds. |
Author | Zang, Shuang-Quan Zhao, Shu-Na Li, Jing Li, Hai-Yang |
AuthorAffiliation | Rutgers University Green Catalysis Center, and College of Chemistry Department of Chemistry and Chemical Biology Zhengzhou University |
AuthorAffiliation_xml | – name: Zhengzhou University – name: Rutgers University – name: Department of Chemistry and Chemical Biology – name: Green Catalysis Center, and College of Chemistry |
Author_xml | – sequence: 1 givenname: Hai-Yang surname: Li fullname: Li, Hai-Yang – sequence: 2 givenname: Shu-Na surname: Zhao fullname: Zhao, Shu-Na – sequence: 3 givenname: Shuang-Quan surname: Zang fullname: Zang, Shuang-Quan – sequence: 4 givenname: Jing surname: Li fullname: Li, Jing |
BackLink | https://www.osti.gov/biblio/1644724$$D View this record in Osti.gov |
BookMark | eNqF0s1rFTEQAPAgFXytXrwLUS9FWM3XJpujPFsVCh5U8BbGfNStu8kzs1vxvzevTxSK6CmB-c0wk8kxOcolR0IecvacM2lfeOuRMWOGcIdsuNKsU0apI7JhkumOMS7ukWPEq3bjRosN-XS-Zr-MJcNE57jA1JV6CXn0NFWY4_dSvyIFpDGl2Nx1pBgzloq0JHoJGFs0B3pdJljGKVJf5l1Zc8D75G6CCeODX-cJ-Xh-9mH7prt49_rt9uVF55XUSxetTB7s0KcAxvLkP4c-SiaVDEIEycGGoL2Megi97z30Q5B66IPQWgD4QZ6QJ4e6BZfRoR-X6L_4knNr13GtlBGqodMD2tXybY24uHlEH6cJciwrOtFzzq02UvyfqtadMULYRp_eoldlre0lb9RgtWT9Xj07KF8LYo3J7eo4Q_3hOHP7pbmt3b6_Wdqrhtkt3AaC_X6WCuP095RHh5SK_nfpP_-gxR__K-52Icmf9BywjA |
CitedBy_id | crossref_primary_10_1016_j_foodchem_2022_135237 crossref_primary_10_1002_adfm_202106925 crossref_primary_10_1016_j_materresbull_2022_111968 crossref_primary_10_1016_j_apsusc_2022_156029 crossref_primary_10_1016_j_apsusc_2023_156788 crossref_primary_10_1016_j_jelechem_2023_117714 crossref_primary_10_1039_D3DT01317K crossref_primary_10_1016_j_matt_2024_04_039 crossref_primary_10_1039_D3TA01930F crossref_primary_10_1039_D1GC01690C crossref_primary_10_1016_j_cej_2023_145934 crossref_primary_10_2139_ssrn_4003092 crossref_primary_10_1016_j_ceramint_2024_04_095 crossref_primary_10_1016_j_dyepig_2022_110578 crossref_primary_10_1039_D4DT02285H crossref_primary_10_1007_s13738_024_03109_4 crossref_primary_10_1021_acs_inorgchem_1c03931 crossref_primary_10_1016_j_jlumin_2021_117958 crossref_primary_10_1088_1402_4896_ace564 crossref_primary_10_1016_j_jpcs_2021_110403 crossref_primary_10_1002_slct_202004806 crossref_primary_10_1016_j_snb_2025_137525 crossref_primary_10_1002_adfm_202421120 crossref_primary_10_1002_anie_202100717 crossref_primary_10_1021_acs_inorgchem_2c01130 crossref_primary_10_1021_acssensors_4c00614 crossref_primary_10_1002_ange_202201924 crossref_primary_10_1038_s41467_023_42959_z crossref_primary_10_1016_j_ccr_2021_214237 crossref_primary_10_1016_j_yofte_2024_103671 crossref_primary_10_3390_ma17010203 crossref_primary_10_1002_adom_202100081 crossref_primary_10_1134_S2635167624600810 crossref_primary_10_1039_D3CS00147D crossref_primary_10_1016_j_xcrp_2021_100519 crossref_primary_10_1016_j_seppur_2023_125178 crossref_primary_10_1039_D1CC06826A crossref_primary_10_3390_ijms22073447 crossref_primary_10_1039_D4CS00997E crossref_primary_10_1016_j_foodres_2022_111585 crossref_primary_10_1002_ange_202303500 crossref_primary_10_1016_j_poly_2022_116278 crossref_primary_10_1021_acs_cgd_0c01492 crossref_primary_10_1016_j_snb_2024_135299 crossref_primary_10_1021_acsanm_4c01795 crossref_primary_10_1007_s10965_022_02900_2 crossref_primary_10_1021_acs_inorgchem_2c01128 crossref_primary_10_1149_2754_2734_acb562 crossref_primary_10_1016_j_talanta_2024_126713 crossref_primary_10_1016_j_aac_2023_02_001 crossref_primary_10_1021_acs_chemmater_2c03426 crossref_primary_10_3390_s24216867 crossref_primary_10_1002_adsu_202200394 crossref_primary_10_2139_ssrn_4020637 crossref_primary_10_1021_acs_inorgchem_2c00270 crossref_primary_10_2139_ssrn_4016141 crossref_primary_10_1002_chem_202304334 crossref_primary_10_1016_j_mcat_2023_113420 crossref_primary_10_1039_D3DT04292H crossref_primary_10_1039_D1DT00728A crossref_primary_10_1070_RCR5032 crossref_primary_10_1002_chem_202100911 crossref_primary_10_1016_j_ccr_2022_214930 crossref_primary_10_1021_acs_inorgchem_4c04771 crossref_primary_10_1016_j_jallcom_2024_176998 crossref_primary_10_1002_ejic_202200204 crossref_primary_10_1016_j_snb_2024_137022 crossref_primary_10_1016_j_synthmet_2021_116890 crossref_primary_10_1021_acs_cgd_1c00606 crossref_primary_10_1021_acsmaterialslett_2c00661 crossref_primary_10_1016_j_apsusc_2023_156520 crossref_primary_10_1016_j_ccr_2021_214263 crossref_primary_10_1016_j_materresbull_2022_111754 crossref_primary_10_1016_j_ccr_2021_214264 crossref_primary_10_3390_inorganics9070058 crossref_primary_10_1016_j_apsusc_2021_151351 crossref_primary_10_1016_j_surfin_2022_102247 crossref_primary_10_1002_advs_202104374 crossref_primary_10_1016_j_ijhydene_2024_06_149 crossref_primary_10_1016_j_jhazmat_2024_134055 crossref_primary_10_1021_jacs_4c15261 crossref_primary_10_1002_anie_202318722 crossref_primary_10_1016_j_ccr_2021_214268 crossref_primary_10_1364_OME_437408 crossref_primary_10_1016_j_ccr_2022_214917 crossref_primary_10_1039_D1NJ02369A crossref_primary_10_1039_D1CS00600B crossref_primary_10_1016_j_poly_2022_116242 crossref_primary_10_1016_j_trac_2024_118033 crossref_primary_10_1016_j_apm_2022_01_008 crossref_primary_10_1038_s41598_022_18932_z crossref_primary_10_1007_s12274_022_4383_6 crossref_primary_10_1021_acssensors_3c01058 crossref_primary_10_1016_j_mcat_2024_114811 crossref_primary_10_3390_cryst15040294 crossref_primary_10_1002_admi_202101629 crossref_primary_10_1039_D5CP00090D crossref_primary_10_1016_j_ccr_2023_215043 crossref_primary_10_1016_j_jhazmat_2024_136261 crossref_primary_10_1039_D4TC02491E crossref_primary_10_1002_admt_202100789 crossref_primary_10_1007_s10904_024_03483_9 crossref_primary_10_1016_j_cej_2022_136532 crossref_primary_10_1007_s40242_023_3228_5 crossref_primary_10_1039_D2CC05131A crossref_primary_10_1021_acs_inorgchem_1c00871 crossref_primary_10_1016_j_apcatb_2021_120106 crossref_primary_10_1016_j_snb_2022_131384 crossref_primary_10_1002_adom_202100283 crossref_primary_10_1021_acs_inorgchem_2c00073 crossref_primary_10_6023_A22030134 crossref_primary_10_1002_tcr_202100127 crossref_primary_10_1016_j_molstruc_2025_141522 crossref_primary_10_1021_acsami_3c18549 crossref_primary_10_3390_nano11112791 crossref_primary_10_1002_ange_202217456 crossref_primary_10_1016_j_ica_2023_121435 crossref_primary_10_1039_D0DT02511A crossref_primary_10_3390_molecules27072226 crossref_primary_10_1002_ejic_202200654 crossref_primary_10_1016_j_snb_2025_137570 crossref_primary_10_1039_D1MA00535A crossref_primary_10_1021_acs_inorgchem_3c00739 crossref_primary_10_1002_smtd_202200470 crossref_primary_10_1016_j_molstruc_2023_135970 crossref_primary_10_1016_j_saa_2023_122637 crossref_primary_10_1021_acs_inorgchem_2c02250 crossref_primary_10_1039_D1RA03078G crossref_primary_10_1039_D1CS00759A crossref_primary_10_1039_D4LF00027G crossref_primary_10_1007_s11243_024_00582_x crossref_primary_10_1016_j_cej_2023_146634 crossref_primary_10_1039_D3TA07171E crossref_primary_10_1021_acs_analchem_2c05816 crossref_primary_10_1039_D0DT04234J crossref_primary_10_1039_D2DT00714B crossref_primary_10_1016_j_snb_2021_131008 crossref_primary_10_1007_s40242_023_3058_5 crossref_primary_10_1039_D1CE00888A crossref_primary_10_1039_D1DT03175A crossref_primary_10_1016_j_jssc_2022_123660 crossref_primary_10_1016_j_ccr_2024_216067 crossref_primary_10_1002_ejic_202200625 crossref_primary_10_1039_D4TB00373J crossref_primary_10_1002_smll_202402255 crossref_primary_10_1016_j_jallcom_2023_169042 crossref_primary_10_3390_s23249719 crossref_primary_10_1039_D1RA02938J crossref_primary_10_3390_molecules26247666 crossref_primary_10_1039_D4TA00330F crossref_primary_10_1021_acsami_1c08840 crossref_primary_10_3390_ma13235435 crossref_primary_10_1016_j_cclet_2022_107969 crossref_primary_10_1021_acsami_2c05860 crossref_primary_10_1021_jacs_0c09284 crossref_primary_10_1016_j_cej_2025_159257 crossref_primary_10_1002_advs_202200850 crossref_primary_10_1007_s41664_022_00224_0 crossref_primary_10_1021_acsmaterialslett_3c00203 crossref_primary_10_1016_j_ica_2023_121642 crossref_primary_10_1007_s10904_023_02597_w crossref_primary_10_1021_acsami_2c15237 crossref_primary_10_1016_j_jhazmat_2023_131936 crossref_primary_10_1016_j_ica_2023_121409 crossref_primary_10_1016_j_jssc_2022_123400 crossref_primary_10_1039_D3TC02812G crossref_primary_10_1039_D2DT02383K crossref_primary_10_1039_D3DT01117H crossref_primary_10_3390_nano12234208 crossref_primary_10_3390_ijerph18094645 crossref_primary_10_1021_acsami_4c15743 crossref_primary_10_1039_D2NJ00358A crossref_primary_10_1016_j_jes_2023_07_003 crossref_primary_10_1021_acsanm_2c00998 crossref_primary_10_1016_j_jhazmat_2024_136697 crossref_primary_10_1021_acsomega_2c01869 crossref_primary_10_1016_j_saa_2021_119515 crossref_primary_10_1039_D4DT00410H crossref_primary_10_1021_acsomega_1c00432 crossref_primary_10_1021_acs_jcim_1c01219 crossref_primary_10_1021_acsami_1c04013 crossref_primary_10_1039_D3DT03882C crossref_primary_10_1039_D3SD00188A crossref_primary_10_1039_D2TA00503D crossref_primary_10_1021_acsami_1c13134 crossref_primary_10_1039_D2RA00376G crossref_primary_10_1021_acs_iecr_4c04488 crossref_primary_10_1016_j_jhazmat_2021_125906 crossref_primary_10_1016_j_mser_2022_100714 crossref_primary_10_1039_D2NJ00444E crossref_primary_10_1002_ange_202407102 crossref_primary_10_1016_j_molstruc_2024_140761 crossref_primary_10_1016_j_cis_2023_102864 crossref_primary_10_1016_j_mattod_2021_01_010 crossref_primary_10_1021_acsami_2c11052 crossref_primary_10_1021_acs_langmuir_3c01752 crossref_primary_10_1002_chem_202103104 crossref_primary_10_1016_j_jece_2022_107228 crossref_primary_10_1039_D2QI00949H crossref_primary_10_1177_17475198211018981 crossref_primary_10_1016_j_mtsust_2023_100335 crossref_primary_10_1016_j_jssc_2022_123623 crossref_primary_10_1016_j_snb_2021_130129 crossref_primary_10_1016_j_dyepig_2022_110379 crossref_primary_10_1002_cptc_202200200 crossref_primary_10_1021_acs_inorgchem_2c04053 crossref_primary_10_1016_j_matt_2021_03_022 crossref_primary_10_1016_j_saa_2023_123585 crossref_primary_10_1016_j_cej_2023_141364 crossref_primary_10_1016_j_jssc_2022_122988 crossref_primary_10_1039_D3AN00043E crossref_primary_10_1016_j_ccr_2022_214995 crossref_primary_10_3390_biom13071154 crossref_primary_10_1039_D2TA03154J crossref_primary_10_1016_j_trac_2024_117558 crossref_primary_10_1021_acs_inorgchem_3c02070 crossref_primary_10_1021_acssensors_4c03085 crossref_primary_10_1016_j_jece_2021_107122 crossref_primary_10_1016_j_jssc_2022_123828 crossref_primary_10_1016_j_saa_2023_123579 crossref_primary_10_1016_j_surfin_2024_104394 crossref_primary_10_1016_j_surfin_2024_105481 crossref_primary_10_1021_jacsau_2c00069 crossref_primary_10_1002_mame_202200469 crossref_primary_10_1016_j_apsusc_2022_156286 crossref_primary_10_1038_s41524_024_01277_8 crossref_primary_10_1002_anie_202202597 crossref_primary_10_1149_1945_7111_ac61be crossref_primary_10_1039_D3QI02466K crossref_primary_10_1016_j_jiec_2022_12_005 crossref_primary_10_1002_adfm_202203224 crossref_primary_10_1016_j_seppur_2023_126235 crossref_primary_10_1016_j_seppur_2024_126534 crossref_primary_10_1016_j_molstruc_2024_140539 crossref_primary_10_1039_D2QI00835A crossref_primary_10_1021_jacs_3c03036 crossref_primary_10_1016_j_snb_2024_136817 crossref_primary_10_1021_acssensors_4c01120 crossref_primary_10_1021_acsnano_4c00208 crossref_primary_10_1021_acsnano_1c09301 crossref_primary_10_1039_D4CE00332B crossref_primary_10_1039_D3CP01865B crossref_primary_10_1016_j_matt_2024_07_013 crossref_primary_10_1016_j_molstruc_2023_136172 crossref_primary_10_1039_D1RA03106F crossref_primary_10_1039_D2CP01139E crossref_primary_10_1016_j_molstruc_2024_138875 crossref_primary_10_1021_acsami_1c03410 crossref_primary_10_1039_D2QI00859A crossref_primary_10_1016_j_ceramint_2022_09_352 crossref_primary_10_1002_cnl2_153 crossref_primary_10_1038_s41467_024_54872_0 crossref_primary_10_1039_D1DT03502A crossref_primary_10_3390_en15238908 crossref_primary_10_1021_acs_cgd_1c00499 crossref_primary_10_1016_j_matchemphys_2021_125661 crossref_primary_10_1016_j_ccr_2023_215558 crossref_primary_10_1002_smll_202203715 crossref_primary_10_1021_acs_inorgchem_2c02915 crossref_primary_10_1039_D3DT03223J crossref_primary_10_1016_j_chemosphere_2022_133772 crossref_primary_10_1039_D3TC00609C crossref_primary_10_1002_anie_202419195 crossref_primary_10_1039_D3NR01723K crossref_primary_10_1007_s13738_024_03026_6 crossref_primary_10_1016_j_poly_2022_115759 crossref_primary_10_1016_j_ccr_2020_213747 crossref_primary_10_1021_acsami_4c03389 crossref_primary_10_1002_advs_202400207 crossref_primary_10_1039_D3TA00582H crossref_primary_10_1021_acsanm_2c05361 crossref_primary_10_1016_j_surfin_2024_104232 crossref_primary_10_1021_acsami_1c16506 crossref_primary_10_1039_D2RA06034E crossref_primary_10_1016_j_nantod_2024_102227 crossref_primary_10_1016_j_microc_2025_112937 crossref_primary_10_1088_2631_8695_ada72b crossref_primary_10_1039_D4NJ03925D crossref_primary_10_1039_D3NJ05251F crossref_primary_10_1002_admi_202102086 crossref_primary_10_1002_slct_202202308 crossref_primary_10_1016_j_trac_2023_117233 crossref_primary_10_1007_s11581_024_05406_7 crossref_primary_10_1021_acs_jpcc_4c00944 crossref_primary_10_1002_ange_202202207 crossref_primary_10_1016_j_apsusc_2023_157075 crossref_primary_10_1016_j_ceramint_2022_10_135 crossref_primary_10_1039_D1MA00341K crossref_primary_10_1002_asia_202100482 crossref_primary_10_1039_D2CC03330E crossref_primary_10_1002_aelm_202100271 crossref_primary_10_1021_acs_analchem_2c05629 crossref_primary_10_1039_D4NR02168A crossref_primary_10_3390_pharmaceutics15010010 crossref_primary_10_1016_j_carbpol_2022_120359 crossref_primary_10_1039_D2CC04334C crossref_primary_10_2139_ssrn_4172129 crossref_primary_10_2139_ssrn_4013431 crossref_primary_10_1016_j_snb_2021_130466 crossref_primary_10_1039_D2NJ06066C crossref_primary_10_1007_s10870_022_00949_x crossref_primary_10_3390_polym16182643 crossref_primary_10_1039_D2SC04898A crossref_primary_10_1021_acssensors_3c00428 crossref_primary_10_1002_chem_202102413 crossref_primary_10_1039_D3TC00806A crossref_primary_10_1016_j_jcis_2022_07_136 crossref_primary_10_1016_j_cclet_2023_109407 crossref_primary_10_1016_j_inoche_2021_108664 crossref_primary_10_3390_catal12030294 crossref_primary_10_3390_app12031574 crossref_primary_10_1002_advs_202308483 crossref_primary_10_1039_D0TA12500H crossref_primary_10_1002_anie_202217456 crossref_primary_10_1002_agt2_145 crossref_primary_10_1039_D1SC02370E crossref_primary_10_1021_acs_cgd_1c01148 crossref_primary_10_1039_D1RA08174H crossref_primary_10_1039_D0RA09298C crossref_primary_10_1021_jacs_1c11507 crossref_primary_10_1021_acs_cgd_2c00080 crossref_primary_10_1039_D2CC04510A crossref_primary_10_3390_cryst12020261 crossref_primary_10_1016_j_envint_2023_107928 crossref_primary_10_1016_j_ccr_2021_213845 crossref_primary_10_1016_j_fuel_2022_124724 crossref_primary_10_1016_j_poly_2021_115173 crossref_primary_10_3390_chemosensors9080226 crossref_primary_10_1016_j_ceramint_2023_05_140 crossref_primary_10_1016_j_inoche_2025_113978 crossref_primary_10_1016_j_ccr_2022_214595 crossref_primary_10_1039_D2QI00768A crossref_primary_10_1016_j_envres_2023_117449 crossref_primary_10_1016_j_tifs_2023_06_016 crossref_primary_10_1016_j_jorganchem_2024_123233 crossref_primary_10_1016_j_microc_2022_107501 crossref_primary_10_1039_D0NR09167G crossref_primary_10_1016_j_saa_2023_123062 crossref_primary_10_1002_chem_202300554 crossref_primary_10_1016_j_heliyon_2023_e23840 crossref_primary_10_1016_j_surfin_2022_101803 crossref_primary_10_1016_j_cclet_2023_108779 crossref_primary_10_1002_adfm_202402173 crossref_primary_10_3390_molecules28114481 crossref_primary_10_1002_cplu_202200303 crossref_primary_10_1021_acs_accounts_1c00615 crossref_primary_10_1016_j_apcatb_2022_121751 crossref_primary_10_1080_10643389_2022_2050161 crossref_primary_10_1016_j_jhazmat_2022_128967 crossref_primary_10_1039_D2CP03226K crossref_primary_10_1016_j_jphotochem_2023_114727 crossref_primary_10_1039_D4DT01014K crossref_primary_10_1039_D2CS00761D crossref_primary_10_1016_j_mtcomm_2023_107217 crossref_primary_10_1016_j_trac_2023_117425 crossref_primary_10_1021_acs_jpclett_2c01429 crossref_primary_10_1021_acs_energyfuels_2c00664 crossref_primary_10_54738_MI_2022_2702 crossref_primary_10_1109_JSEN_2024_3414127 crossref_primary_10_1002_admt_202101252 crossref_primary_10_1002_aenm_202402278 crossref_primary_10_1039_D2DT00007E crossref_primary_10_1002_adsr_202300027 crossref_primary_10_1002_chem_202005166 crossref_primary_10_1016_j_cej_2023_143927 crossref_primary_10_1021_acs_nanolett_3c01723 crossref_primary_10_1016_j_jelechem_2024_118362 crossref_primary_10_1021_acsami_1c24759 crossref_primary_10_1039_D0AY02193H crossref_primary_10_1039_D2TA07938K crossref_primary_10_1107_S2052520623001105 crossref_primary_10_1039_D2TC01949C crossref_primary_10_1002_chem_202402477 crossref_primary_10_1021_acs_inorgchem_1c02794 crossref_primary_10_1002_slct_202404692 crossref_primary_10_1016_j_aca_2024_343307 crossref_primary_10_1016_j_ccr_2024_215657 crossref_primary_10_1002_ange_202100717 crossref_primary_10_1016_j_reactfunctpolym_2024_105918 crossref_primary_10_1039_D1TC01342D crossref_primary_10_1002_anie_202201924 crossref_primary_10_1016_j_jallcom_2021_160115 crossref_primary_10_1039_D4DT01690D crossref_primary_10_3389_fenrg_2022_936493 crossref_primary_10_1002_anie_202407102 crossref_primary_10_1016_j_jssc_2023_124335 crossref_primary_10_1002_adfm_202304473 crossref_primary_10_1016_j_jssc_2021_121985 crossref_primary_10_3390_chemosensors9110316 crossref_primary_10_1039_D0CC06096H crossref_primary_10_1039_D3RA00283G crossref_primary_10_1016_j_nanoen_2022_108149 crossref_primary_10_1021_acsami_2c10573 crossref_primary_10_1039_D3DT04379G crossref_primary_10_1039_D4TC02735C crossref_primary_10_1021_acs_nanolett_1c02649 crossref_primary_10_1016_j_jmst_2024_03_080 crossref_primary_10_1016_j_jcis_2022_07_185 crossref_primary_10_1016_j_jssc_2021_121970 crossref_primary_10_1016_j_cej_2022_137780 crossref_primary_10_1002_agt2_518 crossref_primary_10_1021_acs_accounts_0c00695 crossref_primary_10_1039_D4TC00862F crossref_primary_10_1016_j_jssc_2021_122820 crossref_primary_10_1039_D4MA01169D crossref_primary_10_1002_ange_202419195 crossref_primary_10_1016_j_poly_2024_117204 crossref_primary_10_3390_molecules27072131 crossref_primary_10_1039_D1CY00663K crossref_primary_10_1002_asia_202100638 crossref_primary_10_1021_acs_cgd_1c00672 crossref_primary_10_3390_s21020440 crossref_primary_10_1002_admt_202000883 crossref_primary_10_1016_j_matchemphys_2024_129225 crossref_primary_10_1016_j_jhazmat_2021_126443 crossref_primary_10_1016_j_talanta_2023_125201 crossref_primary_10_1016_j_talo_2024_100329 crossref_primary_10_3390_molecules27165149 crossref_primary_10_1021_acs_accounts_4c00469 crossref_primary_10_1039_D4TC00091A crossref_primary_10_1021_acssensors_2c02408 crossref_primary_10_1016_j_lwt_2024_116684 crossref_primary_10_1039_D1NJ05135K crossref_primary_10_1016_j_snb_2022_133113 crossref_primary_10_1007_s11172_023_3821_3 crossref_primary_10_1142_S1793604723400192 crossref_primary_10_1021_acs_inorgchem_3c02776 crossref_primary_10_1016_j_snb_2022_132094 crossref_primary_10_1016_j_trac_2022_116644 crossref_primary_10_1039_D1TA10008D crossref_primary_10_1016_j_molstruc_2023_136531 crossref_primary_10_1039_D1CE01361K crossref_primary_10_1021_jacs_4c05879 crossref_primary_10_1021_acsnano_4c18848 crossref_primary_10_3390_chemosensors12030042 crossref_primary_10_1002_ange_202502066 crossref_primary_10_1021_acsnano_1c06402 crossref_primary_10_1016_j_ccr_2024_215859 crossref_primary_10_1021_acs_inorgchem_4c01885 crossref_primary_10_1021_acs_analchem_0c05040 crossref_primary_10_1016_j_cej_2024_154294 crossref_primary_10_1021_acs_inorgchem_3c02785 crossref_primary_10_1039_D2TA04842F crossref_primary_10_1039_D3RA00966A crossref_primary_10_1039_D1MH00609F crossref_primary_10_3390_molecules27238599 crossref_primary_10_1039_D3DT01878D crossref_primary_10_1039_D4MH00538D crossref_primary_10_1021_acs_iecr_1c01266 crossref_primary_10_1002_smll_202305024 crossref_primary_10_1039_D0DT04403B crossref_primary_10_1039_D4DT00739E crossref_primary_10_1016_j_carbon_2021_04_080 crossref_primary_10_1016_j_molstruc_2022_134086 crossref_primary_10_1021_acs_jpcc_2c00598 crossref_primary_10_1016_j_jssc_2022_123154 crossref_primary_10_1016_j_colsurfa_2023_132468 crossref_primary_10_1002_cphc_202300207 crossref_primary_10_1016_j_ccr_2020_213743 crossref_primary_10_1016_j_cjsc_2024_100251 crossref_primary_10_1039_D2RA06038H crossref_primary_10_1016_j_ccr_2020_213738 crossref_primary_10_1039_D3RA05573F crossref_primary_10_1002_admi_202102441 crossref_primary_10_61186_ijop_17_2_185 crossref_primary_10_1016_j_snb_2023_134778 crossref_primary_10_1016_j_seppur_2023_123512 crossref_primary_10_1016_j_jssc_2022_123169 crossref_primary_10_1016_j_surfin_2023_103698 crossref_primary_10_3390_en15062023 crossref_primary_10_1016_j_molstruc_2023_135458 crossref_primary_10_1016_j_aca_2022_339509 crossref_primary_10_1021_acs_cgd_2c01552 crossref_primary_10_1039_D2TC00265E crossref_primary_10_1039_D3TA07024G crossref_primary_10_1002_adom_202403564 crossref_primary_10_1016_j_cej_2024_150917 crossref_primary_10_1016_j_jssc_2023_124509 crossref_primary_10_1039_D4TA00959B crossref_primary_10_1016_j_ccr_2022_214611 crossref_primary_10_1016_j_nanoms_2023_02_001 crossref_primary_10_1515_revic_2023_0024 crossref_primary_10_1002_adfm_202413871 crossref_primary_10_1021_acs_jpcc_2c01030 crossref_primary_10_1021_jacs_3c09017 crossref_primary_10_1016_j_saa_2022_121390 crossref_primary_10_1002_smll_202403629 crossref_primary_10_1021_acs_inorgchem_2c03445 crossref_primary_10_1016_j_saa_2022_122244 crossref_primary_10_1039_D3CE00228D crossref_primary_10_1016_j_ccr_2021_214102 crossref_primary_10_1016_j_seppur_2023_124193 crossref_primary_10_1021_acsapm_3c02685 crossref_primary_10_1021_acs_chemmater_1c01723 crossref_primary_10_1016_j_micromeso_2023_112722 crossref_primary_10_1002_ange_202211850 crossref_primary_10_1016_j_esci_2024_100231 crossref_primary_10_1134_S263516762360133X crossref_primary_10_1021_acsaem_2c02972 crossref_primary_10_2139_ssrn_4201268 crossref_primary_10_1016_j_envres_2022_113164 crossref_primary_10_1002_smll_202207547 crossref_primary_10_1134_S1070328422070041 crossref_primary_10_1016_j_apsusc_2024_161289 crossref_primary_10_3390_membranes11030176 crossref_primary_10_1016_j_jssc_2022_123119 crossref_primary_10_1063_5_0202175 crossref_primary_10_1021_acs_jpcc_1c08474 crossref_primary_10_1002_smll_202411264 crossref_primary_10_1007_s11082_024_07348_w crossref_primary_10_1016_j_snb_2022_131466 crossref_primary_10_1002_adfm_202401421 crossref_primary_10_1002_cnma_202100226 crossref_primary_10_1002_smll_202204023 crossref_primary_10_1039_D4TC04574B crossref_primary_10_1002_ange_202204066 crossref_primary_10_1039_D3NA00169E crossref_primary_10_1002_ange_202207579 crossref_primary_10_1016_j_mtnano_2022_100293 crossref_primary_10_1016_j_jmrt_2022_07_006 crossref_primary_10_1016_j_ccr_2024_216360 crossref_primary_10_1007_s00604_025_07055_7 crossref_primary_10_1002_anie_202303500 crossref_primary_10_1016_j_materresbull_2022_111881 crossref_primary_10_1016_j_cej_2021_134170 crossref_primary_10_1016_j_dyepig_2023_111607 crossref_primary_10_1016_j_molstruc_2024_140482 crossref_primary_10_1002_adom_202302405 crossref_primary_10_1016_j_clay_2022_106774 crossref_primary_10_1021_acs_cgd_3c00181 crossref_primary_10_1016_j_cclet_2024_110111 crossref_primary_10_1016_j_snb_2023_134832 crossref_primary_10_1002_cnma_202100400 crossref_primary_10_1016_j_jssc_2022_123346 crossref_primary_10_1016_j_snb_2022_132120 crossref_primary_10_1016_j_cej_2023_142503 crossref_primary_10_1039_D0QI01032D crossref_primary_10_1039_D2MA00389A crossref_primary_10_1039_D4CC02919D crossref_primary_10_1016_j_inoche_2022_109220 crossref_primary_10_3390_bios15030132 crossref_primary_10_1002_smm2_1046 crossref_primary_10_1016_j_micromeso_2024_113299 crossref_primary_10_1002_adfm_202401631 crossref_primary_10_1016_j_jssc_2022_123550 crossref_primary_10_1021_acs_chemrev_2c00270 crossref_primary_10_1016_j_cej_2024_156184 crossref_primary_10_1039_D3TC03053A crossref_primary_10_1016_j_dyepig_2021_109393 crossref_primary_10_1016_j_molliq_2022_118539 crossref_primary_10_1021_acs_inorgchem_4c04872 crossref_primary_10_1016_j_snb_2024_136073 crossref_primary_10_3390_molecules26237103 crossref_primary_10_3390_s21165502 crossref_primary_10_1016_j_ijhydene_2022_01_003 crossref_primary_10_1002_zaac_202400065 crossref_primary_10_1016_j_poly_2024_116952 crossref_primary_10_1039_D2QI01234K crossref_primary_10_1021_acs_inorgchem_2c03226 crossref_primary_10_1021_jacs_2c07692 crossref_primary_10_1021_acsnanoscienceau_3c00024 crossref_primary_10_1016_j_ccr_2024_216320 crossref_primary_10_1021_acssuschemeng_1c01527 crossref_primary_10_1021_jacsau_5c00092 crossref_primary_10_1021_acs_chemmater_2c01567 crossref_primary_10_1039_D1TC01857D crossref_primary_10_1039_D3DT02633G crossref_primary_10_1039_D0CE01649G crossref_primary_10_1016_j_foodchem_2021_131504 crossref_primary_10_1021_acsami_2c10272 crossref_primary_10_1080_00958972_2022_2089028 crossref_primary_10_1002_adom_202400692 crossref_primary_10_1039_D1DT03213E crossref_primary_10_1016_j_coesh_2023_100517 crossref_primary_10_1016_j_ccr_2022_214694 crossref_primary_10_1016_j_commatsci_2023_112275 crossref_primary_10_1002_asia_202400912 crossref_primary_10_1002_anie_202202207 crossref_primary_10_1016_j_molstruc_2022_133346 crossref_primary_10_1039_D3CP00670K crossref_primary_10_3390_chemosensors10080290 crossref_primary_10_3390_chemosensors10080297 crossref_primary_10_1016_j_cclet_2023_108875 crossref_primary_10_1021_acs_inorgchem_1c00936 crossref_primary_10_1016_j_seppur_2024_126485 crossref_primary_10_1039_D2CC02738K crossref_primary_10_1016_j_tifs_2023_104297 crossref_primary_10_1016_j_snb_2024_135793 crossref_primary_10_1007_s41061_022_00367_9 crossref_primary_10_1039_D3RA06710F crossref_primary_10_1021_acsomega_4c06270 crossref_primary_10_1002_anie_202502066 crossref_primary_10_1016_j_snb_2021_131133 crossref_primary_10_2139_ssrn_4059854 crossref_primary_10_3390_s22030895 crossref_primary_10_1016_j_molstruc_2022_133323 crossref_primary_10_1039_D3NJ04122K crossref_primary_10_1021_acs_langmuir_3c02939 crossref_primary_10_1016_j_aca_2023_341990 crossref_primary_10_1039_D3CS00688C crossref_primary_10_1016_j_microc_2023_109297 crossref_primary_10_1002_ange_202318722 crossref_primary_10_1002_aoc_7892 crossref_primary_10_1016_j_jwpe_2024_105859 crossref_primary_10_1039_D2CE01382G crossref_primary_10_54097_hset_v6i_930 crossref_primary_10_1021_jacs_3c08583 crossref_primary_10_1016_j_inoche_2024_113726 crossref_primary_10_1016_j_jcis_2024_07_083 crossref_primary_10_1109_JSEN_2022_3170930 crossref_primary_10_2139_ssrn_4123047 crossref_primary_10_1107_S2053229620016411 crossref_primary_10_1016_j_jssc_2022_123528 crossref_primary_10_1021_acsomega_2c00663 crossref_primary_10_1002_smll_202311448 crossref_primary_10_1016_j_matchemphys_2023_128517 crossref_primary_10_1039_D1TC03197J crossref_primary_10_1016_j_molstruc_2024_138384 crossref_primary_10_1002_jssc_202001172 crossref_primary_10_1039_D4TC01159G crossref_primary_10_1039_D0DT03069D crossref_primary_10_3390_en14164751 crossref_primary_10_1016_j_inoche_2024_112884 crossref_primary_10_1016_j_poly_2021_115438 crossref_primary_10_1002_zaac_202100152 crossref_primary_10_1021_acs_iecr_1c01963 crossref_primary_10_1016_j_checat_2022_08_005 crossref_primary_10_1021_acs_chemmater_4c01497 crossref_primary_10_1016_j_jece_2024_112497 crossref_primary_10_3390_chemosensors11040208 crossref_primary_10_1016_j_jssc_2022_123739 crossref_primary_10_1021_acsami_3c06864 crossref_primary_10_1039_D1CE01416A crossref_primary_10_1039_D3TA08099D crossref_primary_10_1016_j_ccr_2024_216398 crossref_primary_10_1039_D3DT01691A crossref_primary_10_3390_molecules29184495 crossref_primary_10_1016_j_microc_2024_109992 crossref_primary_10_1016_j_chemosphere_2022_135467 crossref_primary_10_1039_D4RA04618H crossref_primary_10_1016_j_jhazmat_2022_130422 crossref_primary_10_3390_cryst13060939 crossref_primary_10_1021_acsaelm_2c01476 crossref_primary_10_1039_D0QI01407A crossref_primary_10_1016_j_snb_2024_136696 crossref_primary_10_1016_j_scib_2022_05_009 crossref_primary_10_1016_j_snb_2024_135354 crossref_primary_10_1021_acsmaterialslett_2c00129 crossref_primary_10_1039_D1TC02190G crossref_primary_10_1016_j_ccr_2022_214645 crossref_primary_10_1016_j_carbpol_2023_121045 crossref_primary_10_1039_D3DT01583A crossref_primary_10_1002_adma_202207741 crossref_primary_10_1039_D2CS00585A crossref_primary_10_3390_nano13233041 crossref_primary_10_1016_j_matt_2022_05_032 crossref_primary_10_1021_acs_inorgchem_1c03179 crossref_primary_10_1016_j_jssc_2021_122101 crossref_primary_10_1002_adfm_202300735 crossref_primary_10_3390_polym15081833 crossref_primary_10_1039_D1RA06533E crossref_primary_10_5004_dwt_2023_29356 crossref_primary_10_1021_acsomega_2c00690 crossref_primary_10_1002_adfm_202422378 crossref_primary_10_1002_smll_202407880 crossref_primary_10_1039_D2CS00257D crossref_primary_10_1039_D3RA08013G crossref_primary_10_1021_jacsau_4c00259 crossref_primary_10_1016_j_trac_2024_117679 crossref_primary_10_1002_adom_202303126 crossref_primary_10_1021_acs_jpcc_3c05025 crossref_primary_10_3390_s24216931 crossref_primary_10_1016_j_saa_2023_122369 crossref_primary_10_1021_acsabm_2c00541 crossref_primary_10_1016_j_snb_2024_136232 crossref_primary_10_1039_D2DT00089J crossref_primary_10_1016_j_jcis_2024_03_105 crossref_primary_10_1039_D4NJ05358C crossref_primary_10_1021_acsami_2c00089 crossref_primary_10_1039_D1SC05594A crossref_primary_10_1016_j_jiec_2023_08_025 crossref_primary_10_1039_D1CE01308D crossref_primary_10_1002_ange_202420882 crossref_primary_10_1016_j_ccr_2024_216161 crossref_primary_10_1021_acs_inorgchem_3c04380 crossref_primary_10_1039_D3TA02482B crossref_primary_10_1016_j_sna_2022_113845 crossref_primary_10_1016_j_jhazmat_2022_128321 crossref_primary_10_1039_D1TA08226D crossref_primary_10_1016_j_jssc_2021_122561 crossref_primary_10_1002_ange_202202597 crossref_primary_10_1016_j_molstruc_2022_132411 crossref_primary_10_1021_acs_chemrev_1c00243 crossref_primary_10_1039_D2RA04063H crossref_primary_10_1039_D2CE01507B crossref_primary_10_1039_D1QI00873K crossref_primary_10_1016_j_jece_2023_111516 crossref_primary_10_1016_j_trac_2024_117656 crossref_primary_10_3390_cryst14070626 crossref_primary_10_1002_adma_202309570 crossref_primary_10_1021_acs_cgd_4c00192 crossref_primary_10_1016_j_inoche_2024_112455 crossref_primary_10_26599_NR_2025_94907229 crossref_primary_10_1021_acs_inorgchem_0c02629 crossref_primary_10_1039_D3QI01890C crossref_primary_10_1016_j_matdes_2021_110243 crossref_primary_10_3390_gels8080464 crossref_primary_10_1021_acs_inorgchem_1c01191 crossref_primary_10_1021_acs_langmuir_4c02502 crossref_primary_10_1016_j_cclet_2024_110606 crossref_primary_10_1007_s40820_023_01047_z crossref_primary_10_1039_D2TB00341D crossref_primary_10_3390_chemosensors13030113 crossref_primary_10_1016_j_snb_2022_133085 crossref_primary_10_1038_s42004_021_00522_1 crossref_primary_10_1016_j_matt_2021_10_016 crossref_primary_10_1016_j_snb_2022_133088 crossref_primary_10_1039_D4CP03497J crossref_primary_10_1039_D4CC00546E crossref_primary_10_1016_j_heliyon_2024_e40306 crossref_primary_10_1016_j_cclet_2022_05_046 crossref_primary_10_1007_s41664_022_00220_4 crossref_primary_10_1016_j_jssc_2023_124084 crossref_primary_10_1038_s41596_023_00810_1 crossref_primary_10_1360_SSC_2024_0191 crossref_primary_10_1002_zaac_202200379 crossref_primary_10_3390_nano12172965 crossref_primary_10_1039_D1DT01860D crossref_primary_10_1186_s12951_021_01207_6 crossref_primary_10_1016_j_ssc_2023_115120 crossref_primary_10_1002_smll_202005327 crossref_primary_10_1016_j_inoche_2021_108574 crossref_primary_10_1002_ange_202410411 crossref_primary_10_1002_jssc_202200836 crossref_primary_10_1016_j_cclet_2021_11_002 crossref_primary_10_1016_j_talanta_2024_127498 crossref_primary_10_1039_D1DT03976H crossref_primary_10_2139_ssrn_4073640 crossref_primary_10_1016_j_colsurfa_2022_129477 crossref_primary_10_1016_j_sna_2021_113296 crossref_primary_10_1039_D1CE00245G crossref_primary_10_1002_chem_202302835 crossref_primary_10_1039_D3CE00398A crossref_primary_10_1016_j_ccr_2020_213682 crossref_primary_10_3390_chemosensors10120511 crossref_primary_10_1016_j_snb_2021_130513 crossref_primary_10_1016_j_snb_2022_131967 crossref_primary_10_1016_j_poly_2021_115284 crossref_primary_10_1016_j_talanta_2025_127764 crossref_primary_10_1021_acs_jchemed_2c00922 crossref_primary_10_1016_j_susmat_2021_e00378 crossref_primary_10_1016_j_ica_2022_120979 crossref_primary_10_1016_j_eurpolymj_2023_112261 crossref_primary_10_1002_cplu_202200445 crossref_primary_10_1021_acsami_3c11385 crossref_primary_10_1021_acs_cgd_1c01268 crossref_primary_10_1016_j_molstruc_2023_136009 crossref_primary_10_1016_j_talanta_2023_124897 crossref_primary_10_1002_adfm_202407702 crossref_primary_10_1002_asia_202100303 crossref_primary_10_3390_molecules27010202 crossref_primary_10_1002_adfm_202300105 crossref_primary_10_1021_acs_analchem_3c01634 crossref_primary_10_1039_D2QI02163C crossref_primary_10_1039_D4TA02438A crossref_primary_10_1016_j_inoche_2021_108550 crossref_primary_10_1016_j_cclet_2023_108669 crossref_primary_10_1039_D3TA07163D crossref_primary_10_3390_molecules28248092 crossref_primary_10_1016_j_micromeso_2021_111319 crossref_primary_10_1021_acs_chemmater_1c02451 crossref_primary_10_1039_D1QM00211B crossref_primary_10_1007_s12274_024_6444_5 crossref_primary_10_1021_acs_inorgchem_1c03334 crossref_primary_10_1016_j_fct_2021_112312 crossref_primary_10_1016_j_cej_2023_147990 crossref_primary_10_1016_j_cej_2025_160075 crossref_primary_10_1039_D3CE00001J crossref_primary_10_1016_j_tifs_2022_04_008 crossref_primary_10_1016_j_jssc_2021_122746 crossref_primary_10_1039_D3CC01685D crossref_primary_10_1016_j_apenergy_2022_120450 crossref_primary_10_1007_s10965_022_03415_6 crossref_primary_10_1021_acs_inorgchem_1c02499 crossref_primary_10_1016_j_snb_2023_135106 crossref_primary_10_1039_D4DT02551B crossref_primary_10_1016_j_ces_2024_120280 crossref_primary_10_1002_smll_202303580 crossref_primary_10_1016_j_molstruc_2023_137119 crossref_primary_10_1002_idm2_12007 crossref_primary_10_1016_j_chemosphere_2022_134516 crossref_primary_10_1002_chem_202300686 crossref_primary_10_1007_s12034_024_03249_6 crossref_primary_10_1002_cjoc_202401056 crossref_primary_10_1039_D1TB02796D crossref_primary_10_1007_s12274_022_4306_6 crossref_primary_10_1039_D2TB01787C crossref_primary_10_1016_j_atmosenv_2023_119657 crossref_primary_10_1016_j_scib_2024_01_016 crossref_primary_10_1039_D0DT03388J crossref_primary_10_1016_j_jcis_2022_06_007 crossref_primary_10_1021_acs_inorgchem_3c03941 crossref_primary_10_1002_anie_202207579 crossref_primary_10_15826_chimtech_2022_9_3_11 crossref_primary_10_1039_D1CS00891A crossref_primary_10_1016_j_trac_2020_116163 crossref_primary_10_1039_D0CE01802C crossref_primary_10_1039_D4MH00507D crossref_primary_10_1016_j_jssc_2022_123093 crossref_primary_10_1021_acsmaterialslett_4c01728 crossref_primary_10_1016_j_ccr_2023_215279 crossref_primary_10_1021_acs_accounts_1c00530 crossref_primary_10_1039_D3SD00214D crossref_primary_10_1002_anie_202410411 crossref_primary_10_1016_j_mtener_2020_100618 crossref_primary_10_1039_D2CC06088D crossref_primary_10_1002_asia_202400106 crossref_primary_10_1016_j_rinp_2024_107770 crossref_primary_10_1149_1945_7111_abfcda crossref_primary_10_1021_acsami_4c10628 crossref_primary_10_1016_j_ultsonch_2022_106202 crossref_primary_10_2139_ssrn_4063437 crossref_primary_10_1016_j_enchem_2021_100067 crossref_primary_10_3390_ijms23137121 crossref_primary_10_2139_ssrn_3995978 crossref_primary_10_1016_j_jssc_2021_122705 crossref_primary_10_1007_s11426_023_1822_6 crossref_primary_10_1116_6_0002229 crossref_primary_10_1002_elan_202300064 crossref_primary_10_1039_D1DT03666A crossref_primary_10_1016_j_jssc_2023_124002 crossref_primary_10_1021_acs_analchem_2c05119 crossref_primary_10_1002_tcr_202300350 crossref_primary_10_1039_D3DT03363E crossref_primary_10_3390_mi13091495 crossref_primary_10_1007_s10853_020_05707_y crossref_primary_10_2139_ssrn_4003127 crossref_primary_10_3390_ma14154236 crossref_primary_10_1007_s00604_025_06969_6 crossref_primary_10_1039_D1CE00399B crossref_primary_10_1039_D3SC06909E crossref_primary_10_1016_j_jece_2023_111112 crossref_primary_10_1021_acs_inorgchem_2c03707 crossref_primary_10_3390_molecules28124593 crossref_primary_10_1142_S1793604723500200 crossref_primary_10_1002_anie_202204066 crossref_primary_10_1039_D4DT01709A crossref_primary_10_1007_s10853_023_08468_6 crossref_primary_10_1016_j_apsusc_2022_153129 crossref_primary_10_1016_j_colsurfa_2021_127851 crossref_primary_10_3390_bios12020051 crossref_primary_10_1002_slct_202301525 crossref_primary_10_1016_j_microc_2022_107688 crossref_primary_10_3390_molecules27217363 crossref_primary_10_1002_anie_202420882 crossref_primary_10_1021_acs_chemmater_2c01753 crossref_primary_10_1021_acsami_2c02607 crossref_primary_10_1016_j_chemosphere_2022_134933 crossref_primary_10_1016_j_chemosphere_2022_134932 crossref_primary_10_1021_acsomega_3c06533 crossref_primary_10_1039_D1TA04444C crossref_primary_10_1016_j_apsusc_2022_155772 crossref_primary_10_1021_acsanm_2c04301 crossref_primary_10_1039_D4TC03702B crossref_primary_10_1016_j_xcrp_2023_101656 crossref_primary_10_1021_acsami_2c22626 crossref_primary_10_3390_inorganics12010021 crossref_primary_10_1021_acs_inorgchem_1c01310 crossref_primary_10_1021_acs_inorgchem_1c01311 crossref_primary_10_1021_acsaem_4c00170 crossref_primary_10_1016_j_snb_2023_134444 crossref_primary_10_1021_acs_cgd_3c00352 crossref_primary_10_1016_j_ccr_2024_215767 crossref_primary_10_1016_j_ceramint_2023_03_274 crossref_primary_10_3389_fchem_2022_881172 crossref_primary_10_1016_j_fochx_2024_101767 crossref_primary_10_1021_acssensors_3c00362 crossref_primary_10_1039_D1TC03683A crossref_primary_10_1002_asia_202401423 crossref_primary_10_1039_D1TC05422H crossref_primary_10_1016_j_microc_2021_107147 crossref_primary_10_1021_acsanm_2c04513 crossref_primary_10_1002_anie_202211850 crossref_primary_10_1016_j_vacuum_2023_112874 crossref_primary_10_1039_D3QM00678F crossref_primary_10_1039_D1RA02971A crossref_primary_10_1016_j_ccr_2020_213615 crossref_primary_10_1016_j_microc_2024_111053 crossref_primary_10_3390_cryst14040318 crossref_primary_10_1021_acs_cgd_2c01443 crossref_primary_10_1021_acs_inorgchem_1c02655 crossref_primary_10_1039_D3QI01723K crossref_primary_10_1021_acs_inorgchem_5c00200 crossref_primary_10_1021_acssensors_3c02558 crossref_primary_10_1016_j_snr_2021_100064 crossref_primary_10_1016_j_xcrp_2023_101679 crossref_primary_10_1016_j_saa_2023_122916 crossref_primary_10_1016_j_snb_2021_130943 |
Cites_doi | 10.1021/jz4015103 10.1039/C9CC02324K 10.1021/jacs.9b11024 10.1039/C8CE01875H 10.1021/acs.chemmater.5b03955 10.1039/C9CC00178F 10.1126/science.1230444 10.1021/ja403449k 10.1021/acs.chemmater.8b00611 10.1021/acs.chemrev.7b00095 10.1021/cr200174w 10.1039/C7QI00815E 10.1021/cm5045732 10.3390/s19040905 10.1016/j.ica.2018.08.050 10.1021/cm301194a 10.1021/ja411224j 10.1021/acsami.6b12118 10.1039/C9CC02285F 10.1039/C6TC05349A 10.1002/smll.201302983 10.1016/j.molstruc.2018.01.077 10.1021/jp3044016 10.1002/anie.200804853 10.1039/C8CC03496F 10.1021/acs.inorgchem.8b02738 10.1039/C9RA04152D 10.1039/C4MH00210E 10.1002/chem.201502033 10.1039/C9CS00906J 10.1039/C5RA08347H 10.1021/acs.inorgchem.6b01928 10.1039/C8CS00688A 10.1016/j.snb.2017.10.189 10.1016/j.ccr.2019.213065 10.1021/acs.chemrev.9b00223 10.1039/C7DT01352C 10.1038/nmat5050 10.1039/C7CS00879A 10.1002/chem.201501843 10.1039/C8QI00814K 10.1002/chem.201800847 10.1021/acsami.7b02630 10.1002/celc.201700931 10.1002/anie.201306304 10.1021/acs.inorgchem.8b00806 10.3390/s19040888 10.1039/C7TA10538J 10.1002/anie.201806732 10.1002/anie.201307217 10.1021/jacs.5b13458 10.1002/adma.201704679 10.1016/j.snb.2018.12.145 10.1039/C3CS60475F 10.1039/C8SC02774A 10.1016/j.aca.2018.09.003 10.1039/C3TA15058E 10.1002/ejic.201600261 10.1021/am402305u 10.1039/c3cc42268b 10.1021/acs.jpclett.0c00457 10.1021/acs.inorgchem.6b00500 10.1021/acs.analchem.8b01941 10.1021/ja106851d 10.1002/anie.201408453 10.1002/chem.201702127 10.1038/nmat4113 10.1002/anie.201912195 10.1016/j.talanta.2019.01.086 10.1038/ncomms3717 10.1039/C4CE02457E 10.1021/la402012d 10.1021/acs.accounts.7b00151 10.1016/j.inoche.2015.12.019 10.1002/advs.201801304 10.1016/j.snb.2016.06.152 10.1002/adfm.201303986 10.1002/anie.201909096 10.1021/acs.chemrev.8b00408 10.1021/ic101501p 10.1021/acs.inorgchem.6b01014 10.1039/C5QI00157A 10.1021/acs.accounts.9b00575 10.1021/acssensors.7b00304 10.1039/c3cc43461c 10.1021/cr300396p 10.1039/C7NJ04698G 10.1021/ja5006465 10.1039/C5TA01738F 10.1016/j.snb.2013.11.102 10.1039/C6TC04724F 10.1039/C6RA25681C 10.1002/anie.201203309 10.1021/acs.cgd.7b01318 10.1021/acscentsci.9b00482 10.1021/acs.chemrev.6b00346 10.1038/s41467-019-09682-0 10.1016/j.jssc.2014.06.018 10.1002/anie.201601782 10.1039/C7NR09536H 10.1021/jacs.8b02492 10.1039/C6CC00189K 10.1016/j.ccr.2018.09.004 10.1126/sciadv.aaq0066 10.1016/j.chempr.2019.04.013 10.1002/chem.201703510 10.1021/jacs.0c00368 10.1002/chem.201405060 10.1002/cplu.201600145 10.1021/ja407778a 10.1016/j.ccr.2017.09.017 10.1002/anie.201506219 10.1021/acsami.0c00803 10.1038/nchem.1457 10.1021/acs.inorgchem.9b00615 10.1021/jacs.7b07008 10.1002/anie.201608439 10.1021/acsami.6b04611 10.1002/anie.201503636 10.1021/jacs.9b04930 10.1039/C7CC00812K 10.1038/nchem.2718 10.3390/s150818153 10.1002/ejic.201601376 10.1016/j.enchem.2020.100029 10.1021/acsami.8b07770 10.1038/s41598-019-51590-2 10.1021/jacs.5b09600 10.1021/acs.cgd.8b00189 10.1002/anie.201914198 10.1039/C7CS00122C 10.1039/c3cc43747g 10.1021/acs.cgd.6b00428 10.1039/C6CE00032K 10.1039/c2jm35273g 10.1021/jacs.6b00248 10.1039/C7CS00885F 10.1039/C5CS00040H 10.1039/C4CS00129J 10.1021/acs.inorgchem.7b00252 10.1039/C7TC05707E 10.1039/C6CS00724D 10.1002/adma.201704303 10.1038/s41467-019-09157-2 10.1021/acs.cgd.9b01427 10.1021/acs.analchem.9b04291 10.1039/C4TA01916D 10.1002/adfm.201503154 10.1039/c3cc49555h 10.1039/C7AY00627F 10.1021/acsami.8b06103 10.1016/j.jssc.2017.02.028 10.1021/acs.analchem.9b00493 10.1039/C8CS00829A 10.1021/ja502643p 10.1016/j.jssc.2017.04.024 10.1021/ja109437d 10.1021/acssensors.5b00236 10.1021/acs.organomet.9b00735 10.1021/acs.inorgchem.7b02827 10.1016/j.sna.2019.06.050 10.1021/acs.analchem.8b00146 10.1016/j.snb.2017.09.041 10.1016/j.snb.2014.05.051 10.1038/s41467-019-11267-w 10.1021/ja312347p 10.1109/JSEN.2015.2438063 10.1039/C6RA19403F 10.1007/s40843-019-9457-5 10.1002/adma.201506457 10.1021/acs.chemmater.6b02528 10.1021/acssuschemeng.8b05368 10.1021/acs.chemrev.9b00666 10.1039/C7TC03312E 10.1021/jacs.7b08840 10.1038/srep04366 10.1016/j.chempr.2016.09.009 10.1002/slct.201600621 10.1039/C6NR02446G 10.1016/j.jssc.2018.10.044 10.1016/j.micromeso.2015.08.020 10.1039/C6DT01363E 10.1021/acs.analchem.5b03974 10.1039/C8CC00564H 10.1016/j.jssc.2017.06.015 10.1016/j.snb.2015.11.071 10.1002/anie.201709558 10.1039/C6RA23694D 10.1038/s41598-018-32810-7 10.1016/j.ccr.2017.06.007 10.1002/adma.200601838 10.1039/C7RA13494K 10.1039/C3CC47723A 10.1021/ac500759n 10.1039/D0TC00117A 10.1039/C4CC08945F 10.1039/C8CC07573E 10.1007/s40843-019-1169-9 10.1038/s41557-018-0171-z 10.1002/cplu.201900109 10.1002/chem.201501043 10.1039/C8TC02400F 10.1038/nchem.2875 10.1002/anie.201410612 10.1021/acsami.9b20763 10.1039/C9CS00880B 10.1016/j.jcis.2017.04.081 10.1021/acsami.8b22002 10.1002/cplu.201600057 10.1002/adfm.201401125 10.1021/jacs.8b11257 10.1039/C6CE00545D 10.1002/ejic.201600184 10.1016/j.chempr.2016.12.002 10.1016/j.snb.2016.11.017 10.1038/srep07053 10.1126/science.1246738 10.1021/jacs.9b00654 10.1002/anie.201808242 10.1039/C7DT00298J 10.1021/acsami.0c00143 10.1039/C8TA02036A 10.1039/C7AY01193H 10.1039/C8TC06630B 10.1039/C5CC09029F 10.1039/C8SC00021B 10.1016/j.snb.2017.12.187 10.1126/science.1067208 10.1039/C4CS00010B 10.3390/s17051108 10.1039/C8CS00256H 10.1021/la400508y 10.1039/C9TC01288E 10.1021/acs.inorgchem.5b00179 10.1039/C5CP01441G 10.1002/anie.201708973 10.1016/j.inoche.2018.07.002 10.1016/j.poly.2019.114314 10.1039/C4CC06729K 10.1002/anie.201906222 10.1021/acs.inorgchem.8b00502 10.1016/j.poly.2017.11.037 10.1039/C9CS00098D 10.1039/C5SC04461H 10.1016/j.chempr.2017.02.010 10.1039/C6NR01206J 10.1016/j.snb.2016.04.064 10.1002/cplu.201600137 10.1038/s41563-018-0189-z 10.1021/cr200101d 10.1016/j.jssc.2017.07.027 10.1039/C7AN01964E 10.1021/acs.analchem.6b03364 10.1002/slct.201803835 10.1016/j.ccr.2020.213222 10.1039/C6DT03812C 10.1016/j.ccr.2016.12.002 10.1021/acs.inorgchem.6b02243 10.1038/srep06247 10.1039/C5CP01988E 10.1002/anie.201207610 10.1039/C3TA15071B 10.1021/acssensors.6b00295 10.1021/acs.analchem.7b03723 10.1039/c2jm32802j 10.1016/j.snb.2016.11.085 10.1039/C5DT01791B 10.1016/j.inoche.2018.07.042 10.1021/ic500474j 10.1021/acssensors.9b00268 10.1021/acsami.7b16761 10.1002/adfm.201102157 10.1021/jacs.9b09103 10.1021/ja909629f 10.1002/anie.201805355 10.1039/C8CC03662D 10.1016/j.mee.2015.04.035 10.1039/c3cc44575e 10.1039/C4CC08136F 10.1016/j.snb.2018.05.113 10.1016/j.snb.2017.05.063 10.1016/j.snb.2017.02.005 10.1021/ja109103t 10.1021/acs.accounts.7b00387 10.1039/C8CC06875E 10.1038/nature19763 10.1039/C7DT02293J 10.1039/C6NJ02163H 10.1039/C7CS00653E 10.1039/C6DT02169G 10.1002/anie.201411854 10.1021/acs.chemmater.5b02476 10.1021/ja302110d 10.1039/C6TC05082D 10.1002/anie.201608780 10.1021/acs.cgd.6b01744 10.1039/C6TC02569B 10.1039/C7TC02430D 10.1021/acs.chemmater.6b00016 10.1039/C6CC05290H 10.1021/acs.inorgchem.5b02150 10.1002/adma.201805871 10.1002/chem.201801844 10.1021/acs.chemrev.8b00311 10.1021/am5070409 10.1039/C9SC03916C 10.1021/acsami.8b18891 10.1039/C9SC02274K 10.1016/j.apsusc.2015.07.166 10.1021/acs.chemmater.9b04440 10.1039/C8TC01454J 10.1002/anie.201307331 10.1002/cplu.201500564 10.1016/j.snb.2018.07.006 10.1039/C5NR06066D 10.1039/C7CS00861A 10.1002/anie.201907772 10.1016/j.ccr.2020.213262 10.1021/acs.inorgchem.8b02625 10.1021/acsami.5b03932 10.1021/acs.chemrev.8b00222 10.1021/cr200324t 10.1039/C7CS00283A 10.1021/ja508592f 10.1016/j.micromeso.2017.06.053 10.1039/C9ME00133F 10.1016/j.snb.2015.05.125 10.1016/j.ica.2017.06.067 10.1002/smll.201801563 10.1038/ncomms15985 10.1002/chem.201806146 10.1021/acs.chemrev.9b00350 10.1039/C4CS00039K 10.1039/C5CC00773A 10.1016/j.snb.2017.06.064 10.1021/ac503622n 10.1016/j.snb.2017.07.026 10.1039/C7CS00108H 10.1039/C2SC21181E 10.1016/j.jssc.2017.04.014 10.1039/C4CS00096J 10.1021/jacs.7b03633 10.1039/C6TC01297C 10.1039/C7CS00614D 10.1126/science.aaf6323 10.1002/advs.201500434 10.1021/acsami.8b07377 10.1016/j.ica.2019.119241 10.1039/C6CS00930A 10.1039/C8CC05459B 10.1039/C6TA10019H 10.1016/j.snb.2018.05.002 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 OTOTI |
DOI | 10.1039/c9cs00778d |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 641 |
ExternalDocumentID | 1644724 10_1039_C9CS00778D c9cs00778d |
GroupedDBID | - 0-7 02 0R 29B 4.4 53G 5GY 70 705 70J 7~J 85S AAEMU AAGNR AAIWI AANOJ ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX COF CS3 DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3I JG M4U N9A O9- OK1 P2P R7B R7D RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 X --- -DZ -~X 0R~ 2WC 6J9 70~ AAHBH AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF ~02 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 -JG 1TJ OTOTI |
ID | FETCH-LOGICAL-c436t-e93fca985fda791fcbd5e30343d22d31a9dd6c3e68d5c5ca58d3685d2662aac83 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Fri May 19 00:45:47 EDT 2023 Fri Jul 11 15:44:57 EDT 2025 Fri Jul 11 08:16:56 EDT 2025 Sun Jun 29 14:15:43 EDT 2025 Thu Apr 24 23:01:00 EDT 2025 Tue Jul 01 04:18:44 EDT 2025 Sat Jan 08 03:51:46 EST 2022 Wed Nov 11 00:25:29 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c436t-e93fca985fda791fcbd5e30343d22d31a9dd6c3e68d5c5ca58d3685d2662aac83 |
Notes | Shuang-Quan Zang received his PhD degree in Chemistry from Nanjing University in 2006 under the supervision of Prof. Qingjin Meng. After postdoctoral research with Prof. T. C. W. Mak in The Chinese University of Hong Kong, he joined in the chemistry faculty of Zhengzhou University. His current scientific interests include atomically precise metal clusters and cluster-assembled materials, functional metal-organic frameworks, luminescence-structure relationship and applications. Shu-Na Zhao obtained her BS degree in Chemistry from Lanzhou University in 2011. She received her PhD degree (2016) in Inorganic Chemistry from Changchun Institute of Applied Chemistry, University of the Chinese Academy of Sciences (UCAS) under the supervision of Prof. Hongjie Zhang, where she studied lanthanide metal-organic frameworks for luminescence sensing. She worked as a postdoctoral fellow in the COMOC group, Department of Chemistry at Ghent University in 2016-2019. Currently, she works at the Laboratory of Functional Crystalline Molecular Materials, Zhengzhou University. Her research interests include synthesis and applications of MOFs in heterogeneous catalysis and chemical sensing. Jing Li is a Distinguished Professor in the Department of Chemistry and Chemical Biology at Rutgers University, USA. She received her PhD degree from Cornell University in 1990 under the guidance of Professor Roald Hoffmann. She joined the chemistry faculty at Rutgers University in 1991 as an Assistant Professor. She was promoted to Associate Professor in 1996, to Full Professor in 1999, and to Distinguished Professor in 2006. She has published 350+ research articles, invited book chapters and reviews, and holds 15 issued and pending patents. Her research focuses on the development of functional materials for renewable, sustainable and clean energy related applications. Hai-Yang Li obtained his BS degree in chemistry in 2011 and received his PhD degree in inorganic chemistry in 2017 from Zhengzhou University under the supervision of Prof. Thomas C. W. Mak and Prof. Shuang-Quan Zang in 2017. After that, he joined the College of Chemistry of Zhengzhou University in 2017. His research focuses on the design and synthesis of functional metal-organic frameworks. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE |
ORCID | 0000-0001-7792-4322 0000-0002-6728-0559 0000000267280559 0000000177924322 |
OpenAccessLink | https://www.osti.gov/biblio/1644724 |
PQID | 2438963059 |
PQPubID | 2047503 |
PageCount | 38 |
ParticipantIDs | crossref_primary_10_1039_C9CS00778D rsc_primary_c9cs00778d proquest_miscellaneous_2430377229 proquest_miscellaneous_2511196732 proquest_journals_2438963059 crossref_citationtrail_10_1039_C9CS00778D osti_scitechconnect_1644724 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-07 |
PublicationDateYYYYMMDD | 2020-09-07 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United Kingdom |
PublicationTitle | Chemical Society reviews |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry Royal Society of Chemistry (RSC) |
Publisher_xml | – name: Royal Society of Chemistry – name: Royal Society of Chemistry (RSC) |
References | Sachdeva (C9CS00778D-(cit330)/*[position()=1]) 2016; 1 Dunning (C9CS00778D-(cit153)/*[position()=1]) 2017; 2 Cao (C9CS00778D-(cit195)/*[position()=1]) 2017; 243 Zhang (C9CS00778D-(cit288)/*[position()=1]) 2018; 10 Stassen (C9CS00778D-(cit239)/*[position()=1]) 2019; 5 Xu (C9CS00778D-(cit309)/*[position()=1]) 2015; 7 Kreno (C9CS00778D-(cit49)/*[position()=1]) 2012; 112 Wang (C9CS00778D-(cit295)/*[position()=1]) 2015; 5 Zhao (C9CS00778D-(cit311)/*[position()=1]) 2020; 177 Dong (C9CS00778D-(cit261)/*[position()=1]) 2014; 53 Davydovskaya (C9CS00778D-(cit284)/*[position()=1]) 2014; 193 Zhang (C9CS00778D-(cit43)/*[position()=1]) 2018; 4 Zhao (C9CS00778D-(cit89)/*[position()=1]) 2016; 52 Yi (C9CS00778D-(cit349)/*[position()=1]) 2018; 54 Lustig (C9CS00778D-(cit40)/*[position()=1]) 2018; 373 Wang (C9CS00778D-(cit291)/*[position()=1]) 2016; 40 Chen (C9CS00778D-(cit110)/*[position()=1]) 2013; 52 Zhou (C9CS00778D-(cit165)/*[position()=1]) 2019; 91 Hao (C9CS00778D-(cit335)/*[position()=1]) 2016; 8 Cui (C9CS00778D-(cit41)/*[position()=1]) 2018; 47 Woellner (C9CS00778D-(cit3)/*[position()=1]) 2018; 30 Wang (C9CS00778D-(cit162)/*[position()=1]) 2016; 45 Liu (C9CS00778D-(cit315)/*[position()=1]) 2017; 56 Chorazy (C9CS00778D-(cit107)/*[position()=1]) 2019; 7 Zhang (C9CS00778D-(cit80)/*[position()=1]) 2018; 354 Wang (C9CS00778D-(cit339)/*[position()=1]) 2017; 251 Zheng (C9CS00778D-(cit329)/*[position()=1]) 2016; 81 Yang (C9CS00778D-(cit300)/*[position()=1]) 2019; 21 Yamagiwa (C9CS00778D-(cit282)/*[position()=1]) 2014; 4 Xu (C9CS00778D-(cit274)/*[position()=1]) 2016; 88 Gustafson (C9CS00778D-(cit280)/*[position()=1]) 2019; 4 Tian (C9CS00778D-(cit336)/*[position()=1]) 2015; 1 Ye (C9CS00778D-(cit85)/*[position()=1]) 2015; 27 Liu (C9CS00778D-(cit137)/*[position()=1]) 2016; 55 Andrés (C9CS00778D-(cit331)/*[position()=1]) 2020; 12 Lin (C9CS00778D-(cit131)/*[position()=1]) 2013; 52 Wang (C9CS00778D-(cit267)/*[position()=1]) 2016; 52 Yu (C9CS00778D-(cit344)/*[position()=1]) 2015; 54 Huang (C9CS00778D-(cit90)/*[position()=1]) 2017; 9 Bobbitt (C9CS00778D-(cit55)/*[position()=1]) 2017; 46 Ma (C9CS00778D-(cit180)/*[position()=1]) 2014; 86 Wu (C9CS00778D-(cit252)/*[position()=1]) 2015; 223 Chen (C9CS00778D-(cit317)/*[position()=1]) 2016; 55 Dong (C9CS00778D-(cit250)/*[position()=1]) 2018; 1160 Liu (C9CS00778D-(cit66)/*[position()=1]) 2018; 5 Cui (C9CS00778D-(cit114)/*[position()=1]) 2014; 53 Zhou (C9CS00778D-(cit79)/*[position()=1]) 2010; 49 Wriedt (C9CS00778D-(cit74)/*[position()=1]) 2013; 135 Bhattacharya (C9CS00778D-(cit76)/*[position()=1]) 2016; 81 Guo (C9CS00778D-(cit212)/*[position()=1]) 2018; 57 Xue (C9CS00778D-(cit341)/*[position()=1]) 2017; 251 Wang (C9CS00778D-(cit218)/*[position()=1]) 2018; 90 Reed (C9CS00778D-(cit235)/*[position()=1]) 2016; 138 Liu (C9CS00778D-(cit68)/*[position()=1]) 2020; 410 Ye (C9CS00778D-(cit233)/*[position()=1]) 2019; 200 Zhang (C9CS00778D-(cit123)/*[position()=1]) 2019; 7 Xin (C9CS00778D-(cit193)/*[position()=1]) 2017; 9 Chen (C9CS00778D-(cit100)/*[position()=1]) 2014; 53 Dong (C9CS00778D-(cit75)/*[position()=1]) 2013; 135 Nagarkar (C9CS00778D-(cit196)/*[position()=1]) 2015; 21 Li (C9CS00778D-(cit67)/*[position()=1]) 2020; 2 Liu (C9CS00778D-(cit343)/*[position()=1]) 2020; 142 Wu (C9CS00778D-(cit81)/*[position()=1]) 2020; 32 Zeleňák (C9CS00778D-(cit351)/*[position()=1]) 2019; 9 Shao (C9CS00778D-(cit104)/*[position()=1]) 2018; 9 Wu (C9CS00778D-(cit231)/*[position()=1]) 2012; 22 Yu (C9CS00778D-(cit113)/*[position()=1]) 2014; 50 Zhang (C9CS00778D-(cit208)/*[position()=1]) 2017; 253 Ding (C9CS00778D-(cit32)/*[position()=1]) 2019; 48 Gamonal (C9CS00778D-(cit229)/*[position()=1]) 2020; 11 Lu (C9CS00778D-(cit342)/*[position()=1]) 2011; 133 Liu (C9CS00778D-(cit136)/*[position()=1]) 2014; 24 Stavila (C9CS00778D-(cit39)/*[position()=1]) 2014; 43 Campbell (C9CS00778D-(cit95)/*[position()=1]) 2015; 54 Zhang (C9CS00778D-(cit87)/*[position()=1]) 2016; 45 Rodenas (C9CS00778D-(cit31)/*[position()=1]) 2015; 14 Campbell (C9CS00778D-(cit64)/*[position()=1]) 2017; 17 Zhang (C9CS00778D-(cit167)/*[position()=1]) 2019; 295 Yang (C9CS00778D-(cit22)/*[position()=1]) 2019; 10 Li (C9CS00778D-(cit38)/*[position()=1]) 2020; 412 Durini (C9CS00778D-(cit326)/*[position()=1]) 2019; 84 Rui (C9CS00778D-(cit223)/*[position()=1]) 2018; 10 Cui (C9CS00778D-(cit42)/*[position()=1]) 2012; 112 Drache (C9CS00778D-(cit160)/*[position()=1]) 2016 Song (C9CS00778D-(cit296)/*[position()=1]) 2016; 6 Ye (C9CS00778D-(cit142)/*[position()=1]) 2017; 56 Zhao (C9CS00778D-(cit297)/*[position()=1]) 2017; 7 Xu (C9CS00778D-(cit337)/*[position()=1]) 2017; 5 Nandi (C9CS00778D-(cit192)/*[position()=1]) 2018; 143 Li (C9CS00778D-(cit350)/*[position()=1]) 2013; 29 Li (C9CS00778D-(cit15)/*[position()=1]) 2020; 49 Zhang (C9CS00778D-(cit219)/*[position()=1]) 2018; 260 Peng (C9CS00778D-(cit279)/*[position()=1]) 2018; 57 Zhang (C9CS00778D-(cit78)/*[position()=1]) 2018; 10 Vellingiri (C9CS00778D-(cit338)/*[position()=1]) 2017; 241 Zhang (C9CS00778D-(cit188)/*[position()=1]) 2015; 355 Toscani (C9CS00778D-(cit236)/*[position()=1]) 2015; 21 Yang (C9CS00778D-(cit197)/*[position()=1]) 2017; 466 Ren (C9CS00778D-(cit313)/*[position()=1]) 2019; 284 Dhakshinamoorthy (C9CS00778D-(cit36)/*[position()=1]) 2018; 47 Wan (C9CS00778D-(cit199)/*[position()=1]) 2015; 220 Zeinali (C9CS00778D-(cit283)/*[position()=1]) 2019; 278 Yao (C9CS00778D-(cit285)/*[position()=1]) 2016; 28 Zhang (C9CS00778D-(cit119)/*[position()=1]) 2017; 5 Khan (C9CS00778D-(cit65)/*[position()=1]) 2019; 19 Dou (C9CS00778D-(cit122)/*[position()=1]) 2014; 136 Zhang (C9CS00778D-(cit181)/*[position()=1]) 2016; 8 Rubio-Giménez (C9CS00778D-(cit98)/*[position()=1]) 2018; 57 Wang (C9CS00778D-(cit145)/*[position()=1]) 2012; 51 Hu (C9CS00778D-(cit52)/*[position()=1]) 2014; 43 Clements (C9CS00778D-(cit105)/*[position()=1]) 2018; 57 Campbell (C9CS00778D-(cit99)/*[position()=1]) 2015; 137 Li (C9CS00778D-(cit157)/*[position()=1]) 2019; 55 Huang (C9CS00778D-(cit316)/*[position()=1]) 2016; 55 Guo (C9CS00778D-(cit268)/*[position()=1]) 2015; 51 Zhang (C9CS00778D-(cit126)/*[position()=1]) 2018; 140 Yi (C9CS00778D-(cit264)/*[position()=1]) 2015; 2 Zhang (C9CS00778D-(cit70)/*[position()=1]) 2014; 43 Xu (C9CS00778D-(cit138)/*[position()=1]) 2018; 90 Li (C9CS00778D-(cit146)/*[position()=1]) 2020; 20 Zhou (C9CS00778D-(cit266)/*[position()=1]) 2016; 52 Yuan (C9CS00778D-(cit301)/*[position()=1]) 2017; 251 Nandi (C9CS00778D-(cit194)/*[position()=1]) 2017; 46 Li (C9CS00778D-(cit16)/*[position()=1]) 2018; 377 He (C9CS00778D-(cit83)/*[position()=1]) 2019; 62 Song (C9CS00778D-(cit185)/*[position()=1]) 2017; 9 Chen (C9CS00778D-(cit269)/*[position()=1]) 2017; 5 Park (C9CS00778D-(cit125)/*[position()=1]) 2013; 4 Sun (C9CS00778D-(cit213)/*[position()=1]) 2018; 24 Pentyala (C9CS00778D-(cit245)/*[position()=1]) 2016; 225 Lin (C9CS00778D-(cit134)/*[position()=1]) 2015; 2 Chernikova (C9CS00778D-(cit221)/*[position()=1]) 2018; 6 Yuvaraja (C9CS00778D-(cit228)/*[position()=1]) 2020; 12 Li (C9CS00778D-(cit77)/*[position()=1]) 2019; 141 Wang (C9CS00778D-(cit46)/*[position()=1]) 2017; 2 Bai (C9CS00778D-(cit314)/*[position()=1]) 2016; 17 Zhang (C9CS00778D-(cit28)/*[position()=1]) 2012; 112 Ling (C9CS00778D-(cit182)/*[position()=1]) 2019; 55 Polunin (C9CS00778D-(cit319)/*[position()=1]) 2015; 54 Hu (C9CS00778D-(cit346)/*[position()=1]) 2014; 2 Weiss (C9CS00778D-(cit169)/*[position()=1]) 2016; 220 Liu (C9CS00778D-(cit211)/*[position()=1]) 2019; 11 Zhang (C9CS00778D-(cit260)/*[position()=1]) 2014; 136 Dolgopolova (C9CS00778D-(cit60)/*[position()=1]) 2018; 47 Ge (C9CS00778D-(cit109)/*[position()=1]) 2017; 56 Zhang (C9CS00778D-(cit71)/*[position()=1]) 2015; 54 Schoedel (C9CS00778D-(cit8)/*[position()=1]) 2016; 116 Zhao (C9CS00778D-(cit10)/*[position()=1]) 2016; 539 Pathak (C9CS00778D-(cit27)/*[position()=1]) 2019; 10 Sun (C9CS00778D-(cit307)/*[position()=1]) 2018; 141 Tissot (C9CS00778D-(cit103)/*[position()=1]) 2018; 55 Lin (C9CS00778D-(cit57)/*[position()=1]) 2016; 3 Stassen (C9CS00778D-(cit56)/*[position()=1]) 2017; 46 He (C9CS00778D-(cit1)/*[position()=1]) 2019; 119 Dalapati (C9CS00778D-(cit177)/*[position()=1]) 2017; 245 Beltrán (C9CS00778D-(cit234)/*[position()=1]) 2014; 50 Liu (C9CS00778D-(cit265)/*[position()=1]) 2015; 51 Yang (C9CS00778D-(cit222)/*[position()=1]) 2012; 4 Li (C9CS00778D-(cit348)/*[position()=1]) 2013; 52 Shustova (C9CS00778D-(cit204)/*[position()=1]) 2013; 135 Douvali (C9CS00778D-(cit158)/*[position()=1]) 2015; 54 Weiss (C9CS00778D-(cit171)/*[position()=1]) 2015; 17 Yuan (C9CS00778D-(cit47)/*[position()=1]) 2018; 30 Chidambaram (C9CS00778D-(cit69)/*[position()=1]) 2018; 5 Zhao (C9CS00778D-(cit320)/*[position()=1]) 2016; 4 Chen (C9CS00778D-(cit130)/*[position()=1]) 2015; 17 Yi (C9CS00778D-(cit294)/*[position()=1]) 2012; 22 Haghighi (C9CS00778D-(cit276)/*[position()=1]) 2019; 9 Lustig (C9CS00778D-(cit53)/*[position()=1]) 2017; 46 Sapsanis (C9CS00778D-(cit173)/*[position()=1]) 2015; 15 Eddaoudi (C9CS00778D-(cit7)/*[position()=1]) 2002; 295 Aubrey (C9CS00778D-(cit278)/*[position()=1]) 2019; 141 Qi (C9CS00778D-(cit132)/*[position()=1]) 2013; 49 Meng (C9CS00778D-(cit230)/*[position()=1]) 2019; 141 Sun (C9CS00778D-(cit62)/*[position()=1]) 2016; 55 Li (C9CS00778D-(cit190)/*[position()=1]) 2014; 4 Zhao (C9CS00778D-(cit262)/*[position()=1]) 2018; 9 Arıcı (C9CS00778D-(cit303)/*[position()=1]) 2017; 249 Mon (C9CS00778D-(cit29)/*[position()=1]) 2017; 139 Talin (C9CS00778D-(cit25)/*[position()=1]) 2014; 343 Xu (C9CS00778D-(cit144)/*[position()=1]) 2016; 4 Ullman (C9CS00778D-(cit112)/*[position()=1]) 2018; 10 Sundaram (C9CS00778D-(cit240)/*[position()=1]) 2018; 24 Ni (C9CS00778D-(cit73)/*[position()=1]) 2017; 335 Wan (C9CS00778D-(cit327)/*[position()=1]) 2014; 201 Schulz (C9CS00778D-(cit225)/*[position()=1]) 2018; 57 Wu (C9CS00778D-(cit106)/*[position()=1]) 2017; 139 Nakatsuka (C9CS00778D-(cit152)/*[position()=1]) 2020; 59 Yang (C9CS00778D-(cit86)/*[position()=1]) 2016; 28 Ma (C9CS00778D-(cit148)/*[position()=1]) 2018; 5 Zheng (C9CS00778D-(cit186)/*[position()=1]) 2017; 5 Travlou (C9CS00778D-(cit201)/*[position()=1]) 2015; 3 Desai (C9CS00778D-(cit232)/*[position()=1]) 2015; 51 Hwang (C9CS00778D-(cit238)/*[position()=1]) 2020; 12 Xie (C9CS00778D-(cit127)/ |
References_xml | – volume: 4 start-page: 2530 year: 2013 ident: C9CS00778D-(cit125)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz4015103 – volume: 55 start-page: 6926 year: 2019 ident: C9CS00778D-(cit157)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC02324K – volume: 141 start-page: 18964 year: 2019 ident: C9CS00778D-(cit129)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11024 – volume: 21 start-page: 321 year: 2019 ident: C9CS00778D-(cit300)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C8CE01875H – volume: 27 start-page: 8255 year: 2015 ident: C9CS00778D-(cit85)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03955 – volume: 55 start-page: 4727 year: 2019 ident: C9CS00778D-(cit310)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC00178F – volume: 341 start-page: 1230444 year: 2013 ident: C9CS00778D-(cit30)/*[position()=1] publication-title: Science doi: 10.1126/science.1230444 – volume: 135 start-page: 10214 year: 2013 ident: C9CS00778D-(cit75)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403449k – volume: 30 start-page: 2160 year: 2018 ident: C9CS00778D-(cit91)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b00611 – volume: 117 start-page: 9755 year: 2017 ident: C9CS00778D-(cit176)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00095 – volume: 112 start-page: 1163 year: 2012 ident: C9CS00778D-(cit28)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200174w – volume: 5 start-page: 979 year: 2018 ident: C9CS00778D-(cit69)/*[position()=1] publication-title: Inorg. Chem. Front. doi: 10.1039/C7QI00815E – volume: 27 start-page: 2460 year: 2015 ident: C9CS00778D-(cit321)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm5045732 – volume: 19 start-page: 905 year: 2019 ident: C9CS00778D-(cit65)/*[position()=1] publication-title: Sensors doi: 10.3390/s19040905 – volume: 483 start-page: 473 year: 2018 ident: C9CS00778D-(cit302)/*[position()=1] publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2018.08.050 – volume: 24 start-page: 3511 year: 2012 ident: C9CS00778D-(cit178)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm301194a – volume: 136 start-page: 5527 year: 2014 ident: C9CS00778D-(cit122)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja411224j – volume: 8 start-page: 32259 year: 2016 ident: C9CS00778D-(cit181)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12118 – volume: 55 start-page: 6385 year: 2019 ident: C9CS00778D-(cit182)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC02285F – volume: 5 start-page: 2311 year: 2017 ident: C9CS00778D-(cit269)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C6TC05349A – volume: 10 start-page: 3672 year: 2014 ident: C9CS00778D-(cit323)/*[position()=1] publication-title: Small doi: 10.1002/smll.201302983 – volume: 1160 start-page: 46 year: 2018 ident: C9CS00778D-(cit250)/*[position()=1] publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2018.01.077 – volume: 116 start-page: 16593 year: 2012 ident: C9CS00778D-(cit237)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp3044016 – volume: 48 start-page: 2334 year: 2009 ident: C9CS00778D-(cit259)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200804853 – volume: 54 start-page: 8088 year: 2018 ident: C9CS00778D-(cit255)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC03496F – volume: 58 start-page: 524 year: 2019 ident: C9CS00778D-(cit248)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b02738 – volume: 9 start-page: 24460 year: 2019 ident: C9CS00778D-(cit276)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C9RA04152D – volume: 2 start-page: 245 year: 2015 ident: C9CS00778D-(cit264)/*[position()=1] publication-title: Mater. Horiz. doi: 10.1039/C4MH00210E – volume: 21 start-page: 15854 year: 2015 ident: C9CS00778D-(cit325)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201502033 – volume: 49 start-page: 1414 year: 2020 ident: C9CS00778D-(cit24)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00906J – volume: 5 start-page: 48881 year: 2015 ident: C9CS00778D-(cit295)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA08347H – volume: 55 start-page: 11831 year: 2016 ident: C9CS00778D-(cit324)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b01928 – volume: 47 start-page: 8611 year: 2018 ident: C9CS00778D-(cit14)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00688A – volume: 257 start-page: 609 year: 2018 ident: C9CS00778D-(cit168)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2017.10.189 – volume: 401 start-page: 213065 year: 2019 ident: C9CS00778D-(cit4)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.213065 – volume: 120 start-page: 1438 year: 2020 ident: C9CS00778D-(cit35)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00223 – volume: 46 start-page: 7098 year: 2017 ident: C9CS00778D-(cit163)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C7DT01352C – volume: 17 start-page: 174 year: 2018 ident: C9CS00778D-(cit9)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat5050 – volume: 47 start-page: 5740 year: 2018 ident: C9CS00778D-(cit41)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00879A – volume: 21 start-page: 14529 year: 2015 ident: C9CS00778D-(cit236)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201501843 – volume: 5 start-page: 2875 year: 2018 ident: C9CS00778D-(cit148)/*[position()=1] publication-title: Inorg. Chem. Front. doi: 10.1039/C8QI00814K – volume: 24 start-page: 9220 year: 2018 ident: C9CS00778D-(cit240)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201800847 – volume: 9 start-page: 24926 year: 2017 ident: C9CS00778D-(cit333)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b02630 – volume: 5 start-page: 6 year: 2018 ident: C9CS00778D-(cit66)/*[position()=1] publication-title: ChemElectroChem doi: 10.1002/celc.201700931 – volume: 52 start-page: 11550 year: 2013 ident: C9CS00778D-(cit110)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201306304 – volume: 57 start-page: 7104 year: 2018 ident: C9CS00778D-(cit212)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b00806 – volume: 19 start-page: 888 year: 2019 ident: C9CS00778D-(cit332)/*[position()=1] publication-title: Sensors doi: 10.3390/s19040888 – volume: 6 start-page: 5550 year: 2018 ident: C9CS00778D-(cit221)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10538J – volume: 57 start-page: 10971 year: 2018 ident: C9CS00778D-(cit279)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201806732 – volume: 52 start-page: 13429 year: 2013 ident: C9CS00778D-(cit131)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201307217 – volume: 138 start-page: 2158 year: 2016 ident: C9CS00778D-(cit128)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b13458 – volume: 30 start-page: 1704679 year: 2018 ident: C9CS00778D-(cit3)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201704679 – volume: 284 start-page: 421 year: 2019 ident: C9CS00778D-(cit313)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2018.12.145 – volume: 43 start-page: 5419 year: 2014 ident: C9CS00778D-(cit2)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60475F – volume: 9 start-page: 7986 year: 2018 ident: C9CS00778D-(cit104)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC02774A – volume: 1043 start-page: 89 year: 2018 ident: C9CS00778D-(cit203)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2018.09.003 – volume: 2 start-page: 5724 year: 2014 ident: C9CS00778D-(cit116)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C3TA15058E – start-page: 4483 year: 2016 ident: C9CS00778D-(cit160)/*[position()=1] publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201600261 – volume: 5 start-page: 10565 year: 2013 ident: C9CS00778D-(cit226)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am402305u – volume: 49 start-page: 7711 year: 2013 ident: C9CS00778D-(cit120)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c3cc42268b – volume: 11 start-page: 3362 year: 2020 ident: C9CS00778D-(cit229)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c00457 – volume: 55 start-page: 5476 year: 2016 ident: C9CS00778D-(cit316)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b00500 – volume: 90 start-page: 9330 year: 2018 ident: C9CS00778D-(cit138)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b01941 – volume: 133 start-page: 4153 year: 2011 ident: C9CS00778D-(cit272)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja106851d – volume: 53 start-page: 14438 year: 2014 ident: C9CS00778D-(cit114)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201408453 – volume: 23 start-page: 12559 year: 2017 ident: C9CS00778D-(cit347)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201702127 – volume: 14 start-page: 48 year: 2015 ident: C9CS00778D-(cit31)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4113 – volume: 59 start-page: 1435 year: 2020 ident: C9CS00778D-(cit152)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201912195 – volume: 200 start-page: 472 year: 2019 ident: C9CS00778D-(cit233)/*[position()=1] publication-title: Talanta doi: 10.1016/j.talanta.2019.01.086 – volume: 4 start-page: 2717 year: 2013 ident: C9CS00778D-(cit18)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms3717 – volume: 17 start-page: 2129 year: 2015 ident: C9CS00778D-(cit130)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C4CE02457E – volume: 29 start-page: 8657 year: 2013 ident: C9CS00778D-(cit350)/*[position()=1] publication-title: Langmuir doi: 10.1021/la402012d – volume: 50 start-page: 2457 year: 2017 ident: C9CS00778D-(cit59)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00151 – volume: 66 start-page: 87 year: 2016 ident: C9CS00778D-(cit306)/*[position()=1] publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2015.12.019 – volume: 6 start-page: 1801304 year: 2019 ident: C9CS00778D-(cit92)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201801304 – volume: 237 start-page: 776 year: 2016 ident: C9CS00778D-(cit334)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2016.06.152 – volume: 24 start-page: 4034 year: 2014 ident: C9CS00778D-(cit287)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303986 – volume: 59 start-page: 172 year: 2020 ident: C9CS00778D-(cit96)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201909096 – volume: 119 start-page: 4471 year: 2019 ident: C9CS00778D-(cit1)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00408 – volume: 49 start-page: 10191 year: 2010 ident: C9CS00778D-(cit79)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic101501p – volume: 55 start-page: 7980 year: 2016 ident: C9CS00778D-(cit317)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b01014 – volume: 2 start-page: 1085 year: 2015 ident: C9CS00778D-(cit134)/*[position()=1] publication-title: Inorg. Chem. Front. doi: 10.1039/C5QI00157A – volume: 53 start-page: 485 year: 2020 ident: C9CS00778D-(cit19)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00575 – volume: 2 start-page: 1294 year: 2017 ident: C9CS00778D-(cit210)/*[position()=1] publication-title: ACS Sens. doi: 10.1021/acssensors.7b00304 – volume: 49 start-page: 6864 year: 2013 ident: C9CS00778D-(cit132)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c3cc43461c – volume: 113 start-page: 3686 year: 2013 ident: C9CS00778D-(cit5)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr300396p – volume: 42 start-page: 3885 year: 2018 ident: C9CS00778D-(cit298)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C7NJ04698G – volume: 136 start-page: 8277 year: 2014 ident: C9CS00778D-(cit244)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5006465 – volume: 3 start-page: 11417 year: 2015 ident: C9CS00778D-(cit201)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA01738F – volume: 193 start-page: 911 year: 2014 ident: C9CS00778D-(cit284)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2013.11.102 – volume: 5 start-page: 2084 year: 2017 ident: C9CS00778D-(cit119)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C6TC04724F – volume: 7 start-page: 2258 year: 2017 ident: C9CS00778D-(cit297)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA25681C – volume: 51 start-page: 9321 year: 2012 ident: C9CS00778D-(cit145)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201203309 – volume: 17 start-page: 6719 year: 2017 ident: C9CS00778D-(cit166)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.7b01318 – volume: 5 start-page: 1425 year: 2019 ident: C9CS00778D-(cit239)/*[position()=1] publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.9b00482 – volume: 116 start-page: 12466 year: 2016 ident: C9CS00778D-(cit8)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00346 – volume: 10 start-page: 1721 year: 2019 ident: C9CS00778D-(cit27)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-09682-0 – volume: 223 start-page: 59 year: 2015 ident: C9CS00778D-(cit252)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2014.06.018 – volume: 55 start-page: 6235 year: 2016 ident: C9CS00778D-(cit224)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201601782 – volume: 10 start-page: 8075 year: 2018 ident: C9CS00778D-(cit243)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR09536H – volume: 140 start-page: 7827 year: 2018 ident: C9CS00778D-(cit126)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02492 – volume: 52 start-page: 5238 year: 2016 ident: C9CS00778D-(cit89)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC00189K – volume: 377 start-page: 307 year: 2018 ident: C9CS00778D-(cit16)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.09.004 – volume: 4 start-page: eaaq0066 year: 2018 ident: C9CS00778D-(cit43)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.aaq0066 – volume: 5 start-page: 1938 year: 2019 ident: C9CS00778D-(cit50)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2019.04.013 – volume: 23 start-page: 13602 year: 2017 ident: C9CS00778D-(cit115)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201703510 – volume: 142 start-page: 6690 year: 2020 ident: C9CS00778D-(cit343)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00368 – volume: 21 start-page: 1645 year: 2015 ident: C9CS00778D-(cit318)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201405060 – volume: 81 start-page: 817 year: 2016 ident: C9CS00778D-(cit133)/*[position()=1] publication-title: ChemPlusChem doi: 10.1002/cplu.201600145 – volume: 135 start-page: 13326 year: 2013 ident: C9CS00778D-(cit204)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407778a – volume: 373 start-page: 116 year: 2018 ident: C9CS00778D-(cit40)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.09.017 – volume: 55 start-page: 3566 year: 2016 ident: C9CS00778D-(cit62)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201506219 – volume: 12 start-page: 18748 year: 2020 ident: C9CS00778D-(cit228)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c00803 – volume: 4 start-page: 887 year: 2012 ident: C9CS00778D-(cit222)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1457 – volume: 58 start-page: 10686 year: 2019 ident: C9CS00778D-(cit352)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b00615 – volume: 139 start-page: 11714 year: 2017 ident: C9CS00778D-(cit106)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07008 – volume: 55 start-page: 16021 year: 2016 ident: C9CS00778D-(cit137)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201608439 – volume: 8 start-page: 18043 year: 2016 ident: C9CS00778D-(cit254)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b04611 – volume: 54 start-page: 9861 year: 2015 ident: C9CS00778D-(cit71)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201503636 – volume: 141 start-page: 12663 year: 2019 ident: C9CS00778D-(cit77)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04930 – volume: 53 start-page: 6077 year: 2017 ident: C9CS00778D-(cit175)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC00812K – volume: 9 start-page: 689 year: 2017 ident: C9CS00778D-(cit90)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2718 – volume: 15 start-page: 18153 year: 2015 ident: C9CS00778D-(cit173)/*[position()=1] publication-title: Sensors doi: 10.3390/s150818153 – start-page: 1396 year: 2017 ident: C9CS00778D-(cit147)/*[position()=1] publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201601376 – volume: 2 start-page: 100029 year: 2020 ident: C9CS00778D-(cit67)/*[position()=1] publication-title: EnergyChem doi: 10.1016/j.enchem.2020.100029 – volume: 10 start-page: 27465 year: 2018 ident: C9CS00778D-(cit78)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b07770 – volume: 9 start-page: 15572 year: 2019 ident: C9CS00778D-(cit351)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-019-51590-2 – volume: 137 start-page: 13780 year: 2015 ident: C9CS00778D-(cit99)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b09600 – volume: 18 start-page: 3883 year: 2018 ident: C9CS00778D-(cit121)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.8b00189 – volume: 59 start-page: 4491 year: 2020 ident: C9CS00778D-(cit172)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201914198 – volume: 46 start-page: 3185 year: 2017 ident: C9CS00778D-(cit56)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00122C – volume: 49 start-page: 8244 year: 2013 ident: C9CS00778D-(cit149)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c3cc43747g – volume: 16 start-page: 3067 year: 2016 ident: C9CS00778D-(cit271)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.6b00428 – volume: 18 start-page: 4374 year: 2016 ident: C9CS00778D-(cit187)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C6CE00032K – volume: 22 start-page: 23201 year: 2012 ident: C9CS00778D-(cit294)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm35273g – volume: 138 start-page: 5594 year: 2016 ident: C9CS00778D-(cit235)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00248 – volume: 47 start-page: 4729 year: 2018 ident: C9CS00778D-(cit6)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00885F – volume: 44 start-page: 4290 year: 2015 ident: C9CS00778D-(cit51)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00040H – volume: 43 start-page: 5789 year: 2014 ident: C9CS00778D-(cit70)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00129J – volume: 56 start-page: 4238 year: 2017 ident: C9CS00778D-(cit142)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b00252 – volume: 6 start-page: 2010 year: 2018 ident: C9CS00778D-(cit345)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C7TC05707E – volume: 46 start-page: 4774 year: 2017 ident: C9CS00778D-(cit37)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00724D – volume: 30 start-page: 1704303 year: 2018 ident: C9CS00778D-(cit47)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201704303 – volume: 10 start-page: 1328 year: 2019 ident: C9CS00778D-(cit220)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-09157-2 – volume: 20 start-page: 1103 year: 2020 ident: C9CS00778D-(cit146)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.9b01427 – volume: 91 start-page: 15853 year: 2019 ident: C9CS00778D-(cit207)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b04291 – volume: 2 start-page: 14222 year: 2014 ident: C9CS00778D-(cit346)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01916D – volume: 25 start-page: 6448 year: 2015 ident: C9CS00778D-(cit111)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503154 – volume: 50 start-page: 3579 year: 2014 ident: C9CS00778D-(cit234)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c3cc49555h – volume: 9 start-page: 3094 year: 2017 ident: C9CS00778D-(cit193)/*[position()=1] publication-title: Anal. Methods doi: 10.1039/C7AY00627F – volume: 10 start-page: 23976 year: 2018 ident: C9CS00778D-(cit288)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b06103 – volume: 249 start-page: 141 year: 2017 ident: C9CS00778D-(cit303)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2017.02.028 – volume: 91 start-page: 4845 year: 2019 ident: C9CS00778D-(cit165)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b00493 – volume: 48 start-page: 2783 year: 2019 ident: C9CS00778D-(cit32)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00829A – volume: 136 start-page: 7241 year: 2014 ident: C9CS00778D-(cit260)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502643p – volume: 251 start-page: 170 year: 2017 ident: C9CS00778D-(cit341)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2017.04.024 – volume: 133 start-page: 4172 year: 2011 ident: C9CS00778D-(cit342)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja109437d – volume: 1 start-page: 243 year: 2015 ident: C9CS00778D-(cit336)/*[position()=1] publication-title: ACS Sens. doi: 10.1021/acssensors.5b00236 – volume: 39 start-page: 883 year: 2020 ident: C9CS00778D-(cit214)/*[position()=1] publication-title: Organometallics doi: 10.1021/acs.organomet.9b00735 – volume: 57 start-page: 1417 year: 2018 ident: C9CS00778D-(cit290)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b02827 – volume: 295 start-page: 687 year: 2019 ident: C9CS00778D-(cit167)/*[position()=1] publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2019.06.050 – volume: 90 start-page: 3608 year: 2018 ident: C9CS00778D-(cit218)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b00146 – volume: 255 start-page: 2483 year: 2018 ident: C9CS00778D-(cit246)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2017.09.041 – volume: 201 start-page: 413 year: 2014 ident: C9CS00778D-(cit327)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2014.05.051 – volume: 10 start-page: 3260 year: 2019 ident: C9CS00778D-(cit22)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-11267-w – volume: 135 start-page: 4040 year: 2013 ident: C9CS00778D-(cit74)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312347p – volume: 15 start-page: 5327 year: 2015 ident: C9CS00778D-(cit247)/*[position()=1] publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2015.2438063 – volume: 6 start-page: 88991 year: 2016 ident: C9CS00778D-(cit174)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA19403F – volume: 62 start-page: 1445 year: 2019 ident: C9CS00778D-(cit184)/*[position()=1] publication-title: Sci. China Mater. doi: 10.1007/s40843-019-9457-5 – volume: 28 start-page: 5229 year: 2016 ident: C9CS00778D-(cit285)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201506457 – volume: 28 start-page: 5264 year: 2016 ident: C9CS00778D-(cit94)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02528 – volume: 7 start-page: 4012 year: 2019 ident: C9CS00778D-(cit242)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b05368 – year: 2020 ident: C9CS00778D-(cit21)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00666 – volume: 5 start-page: 10133 year: 2017 ident: C9CS00778D-(cit164)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C7TC03312E – volume: 139 start-page: 16759 year: 2017 ident: C9CS00778D-(cit93)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08840 – volume: 4 start-page: 4366 year: 2014 ident: C9CS00778D-(cit190)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep04366 – volume: 1 start-page: 557 year: 2016 ident: C9CS00778D-(cit33)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2016.09.009 – volume: 1 start-page: 1917 year: 2016 ident: C9CS00778D-(cit140)/*[position()=1] publication-title: ChemistrySelect doi: 10.1002/slct.201600621 – volume: 8 start-page: 12047 year: 2016 ident: C9CS00778D-(cit335)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR02446G – volume: 269 start-page: 588 year: 2019 ident: C9CS00778D-(cit305)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2018.10.044 – volume: 220 start-page: 39 year: 2016 ident: C9CS00778D-(cit169)/*[position()=1] publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2015.08.020 – volume: 45 start-page: 10510 year: 2016 ident: C9CS00778D-(cit87)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C6DT01363E – volume: 88 start-page: 1748 year: 2016 ident: C9CS00778D-(cit154)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b03974 – volume: 54 start-page: 2546 year: 2018 ident: C9CS00778D-(cit257)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC00564H – volume: 253 start-page: 430 year: 2017 ident: C9CS00778D-(cit304)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2017.06.015 – volume: 225 start-page: 363 year: 2016 ident: C9CS00778D-(cit245)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2015.11.071 – volume: 56 start-page: 16510 year: 2017 ident: C9CS00778D-(cit97)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201709558 – volume: 6 start-page: 110182 year: 2016 ident: C9CS00778D-(cit296)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA23694D – volume: 8 start-page: 14414 year: 2018 ident: C9CS00778D-(cit159)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-018-32810-7 – volume: 354 start-page: 28 year: 2018 ident: C9CS00778D-(cit80)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.06.007 – volume: 19 start-page: 1693 year: 2007 ident: C9CS00778D-(cit286)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200601838 – volume: 8 start-page: 10746 year: 2018 ident: C9CS00778D-(cit299)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C7RA13494K – volume: 50 start-page: 1444 year: 2014 ident: C9CS00778D-(cit113)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C3CC47723A – volume: 86 start-page: 6948 year: 2014 ident: C9CS00778D-(cit312)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac500759n – volume: 8 start-page: 3622 year: 2020 ident: C9CS00778D-(cit209)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/D0TC00117A – volume: 51 start-page: 1677 year: 2015 ident: C9CS00778D-(cit265)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC08945F – volume: 55 start-page: 194 year: 2018 ident: C9CS00778D-(cit103)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC07573E – volume: 62 start-page: 1655 year: 2019 ident: C9CS00778D-(cit83)/*[position()=1] publication-title: Sci. China Mater. doi: 10.1007/s40843-019-1169-9 – volume: 11 start-page: 170 year: 2019 ident: C9CS00778D-(cit34)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/s41557-018-0171-z – volume: 84 start-page: 307 year: 2019 ident: C9CS00778D-(cit326)/*[position()=1] publication-title: ChemPlusChem doi: 10.1002/cplu.201900109 – volume: 21 start-page: 9994 year: 2015 ident: C9CS00778D-(cit196)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201501043 – volume: 6 start-page: 7030 year: 2018 ident: C9CS00778D-(cit253)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C8TC02400F – volume: 10 start-page: 78 year: 2017 ident: C9CS00778D-(cit11)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2875 – volume: 54 start-page: 1651 year: 2015 ident: C9CS00778D-(cit158)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201410612 – volume: 12 start-page: 4155 year: 2020 ident: C9CS00778D-(cit331)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b20763 – volume: 49 start-page: 2378 year: 2020 ident: C9CS00778D-(cit45)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00880B – volume: 502 start-page: 8 year: 2017 ident: C9CS00778D-(cit143)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.04.081 – volume: 11 start-page: 14175 year: 2019 ident: C9CS00778D-(cit241)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b22002 – volume: 81 start-page: 758 year: 2016 ident: C9CS00778D-(cit329)/*[position()=1] publication-title: ChemPlusChem doi: 10.1002/cplu.201600057 – volume: 24 start-page: 5866 year: 2014 ident: C9CS00778D-(cit136)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201401125 – volume: 141 start-page: 2046 year: 2019 ident: C9CS00778D-(cit230)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11257 – volume: 18 start-page: 3746 year: 2016 ident: C9CS00778D-(cit61)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C6CE00545D – start-page: 3411 year: 2016 ident: C9CS00778D-(cit293)/*[position()=1] publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201600184 – volume: 2 start-page: 52 year: 2017 ident: C9CS00778D-(cit46)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2016.12.002 – volume: 241 start-page: 938 year: 2017 ident: C9CS00778D-(cit338)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2016.11.017 – volume: 4 start-page: 7053 year: 2014 ident: C9CS00778D-(cit183)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep07053 – volume: 343 start-page: 66 year: 2014 ident: C9CS00778D-(cit25)/*[position()=1] publication-title: Science doi: 10.1126/science.1246738 – volume: 141 start-page: 5005 year: 2019 ident: C9CS00778D-(cit278)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b00654 – volume: 57 start-page: 15086 year: 2018 ident: C9CS00778D-(cit98)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201808242 – volume: 46 start-page: 3353 year: 2017 ident: C9CS00778D-(cit258)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C7DT00298J – volume: 12 start-page: 13338 year: 2020 ident: C9CS00778D-(cit238)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c00143 – volume: 6 start-page: 12115 year: 2018 ident: C9CS00778D-(cit215)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02036A – volume: 9 start-page: 3914 year: 2017 ident: C9CS00778D-(cit185)/*[position()=1] publication-title: Anal. Methods doi: 10.1039/C7AY01193H – volume: 7 start-page: 4164 year: 2019 ident: C9CS00778D-(cit107)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C8TC06630B – volume: 52 start-page: 2265 year: 2016 ident: C9CS00778D-(cit266)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC09029F – volume: 9 start-page: 2918 year: 2018 ident: C9CS00778D-(cit262)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC00021B – volume: 260 start-page: 63 year: 2018 ident: C9CS00778D-(cit219)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2017.12.187 – volume: 295 start-page: 469 year: 2002 ident: C9CS00778D-(cit7)/*[position()=1] publication-title: Science doi: 10.1126/science.1067208 – volume: 43 start-page: 5815 year: 2014 ident: C9CS00778D-(cit52)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00010B – volume: 17 start-page: 1108 year: 2017 ident: C9CS00778D-(cit64)/*[position()=1] publication-title: Sensors doi: 10.3390/s17051108 – volume: 47 start-page: 8134 year: 2018 ident: C9CS00778D-(cit36)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00256H – volume: 29 start-page: 5927 year: 2013 ident: C9CS00778D-(cit281)/*[position()=1] publication-title: Langmuir doi: 10.1021/la400508y – volume: 7 start-page: 5652 year: 2019 ident: C9CS00778D-(cit123)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C9TC01288E – volume: 54 start-page: 5232 year: 2015 ident: C9CS00778D-(cit319)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b00179 – volume: 17 start-page: 16977 year: 2015 ident: C9CS00778D-(cit124)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP01441G – volume: 56 start-page: 14982 year: 2017 ident: C9CS00778D-(cit315)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201708973 – volume: 95 start-page: 78 year: 2018 ident: C9CS00778D-(cit251)/*[position()=1] publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2018.07.002 – volume: 177 start-page: 114314 year: 2020 ident: C9CS00778D-(cit311)/*[position()=1] publication-title: Polyhedron doi: 10.1016/j.poly.2019.114314 – volume: 51 start-page: 376 year: 2015 ident: C9CS00778D-(cit268)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC06729K – volume: 58 start-page: 14089 year: 2019 ident: C9CS00778D-(cit277)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201906222 – volume: 57 start-page: 9839 year: 2018 ident: C9CS00778D-(cit217)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b00502 – volume: 141 start-page: 223 year: 2018 ident: C9CS00778D-(cit307)/*[position()=1] publication-title: Polyhedron doi: 10.1016/j.poly.2017.11.037 – volume: 49 start-page: 1517 year: 2020 ident: C9CS00778D-(cit15)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00098D – volume: 7 start-page: 2286 year: 2016 ident: C9CS00778D-(cit108)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C5SC04461H – volume: 2 start-page: 579 year: 2017 ident: C9CS00778D-(cit153)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2017.02.010 – volume: 8 start-page: 11649 year: 2016 ident: C9CS00778D-(cit135)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR01206J – volume: 236 start-page: 988 year: 2016 ident: C9CS00778D-(cit256)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2016.04.064 – volume: 81 start-page: 675 year: 2016 ident: C9CS00778D-(cit82)/*[position()=1] publication-title: ChemPlusChem doi: 10.1002/cplu.201600137 – volume: 17 start-page: 1027 year: 2018 ident: C9CS00778D-(cit26)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/s41563-018-0189-z – volume: 112 start-page: 1126 year: 2012 ident: C9CS00778D-(cit42)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200101d – volume: 255 start-page: 97 year: 2017 ident: C9CS00778D-(cit189)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2017.07.027 – volume: 143 start-page: 1482 year: 2018 ident: C9CS00778D-(cit192)/*[position()=1] publication-title: Analyst doi: 10.1039/C7AN01964E – volume: 88 start-page: 12234 year: 2016 ident: C9CS00778D-(cit274)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b03364 – volume: 4 start-page: 3862 year: 2019 ident: C9CS00778D-(cit292)/*[position()=1] publication-title: ChemistrySelect doi: 10.1002/slct.201803835 – volume: 410 start-page: 213222 year: 2020 ident: C9CS00778D-(cit68)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213222 – volume: 45 start-page: 18450 year: 2016 ident: C9CS00778D-(cit162)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C6DT03812C – volume: 335 start-page: 28 year: 2017 ident: C9CS00778D-(cit73)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2016.12.002 – volume: 56 start-page: 336 year: 2017 ident: C9CS00778D-(cit109)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b02243 – volume: 4 start-page: 6247 year: 2014 ident: C9CS00778D-(cit282)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep06247 – volume: 17 start-page: 21634 year: 2015 ident: C9CS00778D-(cit171)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP01988E – volume: 52 start-page: 710 year: 2013 ident: C9CS00778D-(cit348)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201207610 – volume: 2 start-page: 6426 year: 2014 ident: C9CS00778D-(cit249)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C3TA15071B – volume: 1 start-page: 1188 year: 2016 ident: C9CS00778D-(cit330)/*[position()=1] publication-title: ACS Sens. doi: 10.1021/acssensors.6b00295 – volume: 89 start-page: 13434 year: 2017 ident: C9CS00778D-(cit156)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b03723 – volume: 22 start-page: 18418 year: 2012 ident: C9CS00778D-(cit191)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm32802j – volume: 243 start-page: 8 year: 2017 ident: C9CS00778D-(cit195)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2016.11.085 – volume: 44 start-page: 13586 year: 2015 ident: C9CS00778D-(cit88)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C5DT01791B – volume: 96 start-page: 16 year: 2018 ident: C9CS00778D-(cit308)/*[position()=1] publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2018.07.042 – volume: 53 start-page: 5411 year: 2014 ident: C9CS00778D-(cit100)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic500474j – volume: 4 start-page: 1586 year: 2019 ident: C9CS00778D-(cit280)/*[position()=1] publication-title: ACS Sens. doi: 10.1021/acssensors.9b00268 – volume: 10 start-page: 2837 year: 2018 ident: C9CS00778D-(cit223)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b16761 – volume: 22 start-page: 1698 year: 2012 ident: C9CS00778D-(cit231)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201102157 – volume: 141 start-page: 18211 year: 2019 ident: C9CS00778D-(cit72)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09103 – volume: 132 start-page: 922 year: 2010 ident: C9CS00778D-(cit127)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja909629f – volume: 57 start-page: 12961 year: 2018 ident: C9CS00778D-(cit225)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201805355 – volume: 54 start-page: 8233 year: 2018 ident: C9CS00778D-(cit349)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC03662D – volume: 136 start-page: 71 year: 2015 ident: C9CS00778D-(cit202)/*[position()=1] publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2015.04.035 – volume: 49 start-page: 7156 year: 2013 ident: C9CS00778D-(cit206)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c3cc44575e – volume: 51 start-page: 2280 year: 2015 ident: C9CS00778D-(cit227)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC08136F – volume: 271 start-page: 33 year: 2018 ident: C9CS00778D-(cit289)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2018.05.113 – volume: 251 start-page: 667 year: 2017 ident: C9CS00778D-(cit339)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2017.05.063 – volume: 245 start-page: 1039 year: 2017 ident: C9CS00778D-(cit177)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2017.02.005 – volume: 133 start-page: 1220 year: 2011 ident: C9CS00778D-(cit141)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja109103t – volume: 50 start-page: 2789 year: 2017 ident: C9CS00778D-(cit58)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00387 – volume: 55 start-page: 349 year: 2019 ident: C9CS00778D-(cit216)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC06875E – volume: 539 start-page: 76 year: 2016 ident: C9CS00778D-(cit10)/*[position()=1] publication-title: Nature doi: 10.1038/nature19763 – volume: 46 start-page: 12856 year: 2017 ident: C9CS00778D-(cit194)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C7DT02293J – volume: 40 start-page: 8600 year: 2016 ident: C9CS00778D-(cit291)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C6NJ02163H – volume: 47 start-page: 533 year: 2018 ident: C9CS00778D-(cit20)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00653E – volume: 45 start-page: 14888 year: 2016 ident: C9CS00778D-(cit270)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C6DT02169G – volume: 54 start-page: 4349 year: 2015 ident: C9CS00778D-(cit95)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201411854 – volume: 27 start-page: 7601 year: 2015 ident: C9CS00778D-(cit117)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02476 – volume: 134 start-page: 9050 year: 2012 ident: C9CS00778D-(cit322)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja302110d – volume: 5 start-page: 1064 year: 2017 ident: C9CS00778D-(cit150)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C6TC05082D – volume: 55 start-page: 15879 year: 2016 ident: C9CS00778D-(cit198)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201608780 – volume: 17 start-page: 423 year: 2016 ident: C9CS00778D-(cit314)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.6b01744 – volume: 4 start-page: 8514 year: 2016 ident: C9CS00778D-(cit144)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C6TC02569B – volume: 5 start-page: 9943 year: 2017 ident: C9CS00778D-(cit186)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C7TC02430D – volume: 28 start-page: 2652 year: 2016 ident: C9CS00778D-(cit86)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00016 – volume: 52 start-page: 10249 year: 2016 ident: C9CS00778D-(cit267)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC05290H – volume: 54 start-page: 11590 year: 2015 ident: C9CS00778D-(cit344)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b02150 – volume: 32 start-page: 1805871 year: 2020 ident: C9CS00778D-(cit81)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201805871 – volume: 24 start-page: 10829 year: 2018 ident: C9CS00778D-(cit213)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201801844 – volume: 119 start-page: 478 year: 2019 ident: C9CS00778D-(cit63)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00311 – volume: 7 start-page: 721 year: 2015 ident: C9CS00778D-(cit309)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5070409 – volume: 10 start-page: 10209 year: 2019 ident: C9CS00778D-(cit48)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC03916C – volume: 11 start-page: 1713 year: 2019 ident: C9CS00778D-(cit211)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b18891 – volume: 10 start-page: 7496 year: 2019 ident: C9CS00778D-(cit102)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC02274K – volume: 355 start-page: 814 year: 2015 ident: C9CS00778D-(cit188)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.07.166 – volume: 32 start-page: 841 year: 2019 ident: C9CS00778D-(cit155)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04440 – volume: 6 start-page: 9248 year: 2018 ident: C9CS00778D-(cit161)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C8TC01454J – volume: 53 start-page: 1575 year: 2014 ident: C9CS00778D-(cit261)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201307331 – volume: 81 start-page: 733 year: 2016 ident: C9CS00778D-(cit76)/*[position()=1] publication-title: ChemPlusChem doi: 10.1002/cplu.201500564 – volume: 278 start-page: 153 year: 2019 ident: C9CS00778D-(cit283)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2018.07.006 – volume: 8 start-page: 2881 year: 2016 ident: C9CS00778D-(cit205)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR06066D – volume: 47 start-page: 4710 year: 2018 ident: C9CS00778D-(cit60)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00861A – volume: 58 start-page: 14915 year: 2019 ident: C9CS00778D-(cit101)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201907772 – volume: 412 start-page: 213262 year: 2020 ident: C9CS00778D-(cit38)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213262 – volume: 57 start-page: 14930 year: 2018 ident: C9CS00778D-(cit105)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b02625 – volume: 7 start-page: 14493 year: 2015 ident: C9CS00778D-(cit118)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03932 – volume: 118 start-page: 8889 year: 2018 ident: C9CS00778D-(cit17)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00222 – volume: 112 start-page: 1105 year: 2012 ident: C9CS00778D-(cit49)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200324t – volume: 46 start-page: 6927 year: 2017 ident: C9CS00778D-(cit44)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00283A – volume: 136 start-page: 17477 year: 2014 ident: C9CS00778D-(cit151)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja508592f – volume: 253 start-page: 146 year: 2017 ident: C9CS00778D-(cit208)/*[position()=1] publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2017.06.053 – volume: 5 start-page: 469 year: 2020 ident: C9CS00778D-(cit328)/*[position()=1] publication-title: Mol. Syst. Des. Eng. doi: 10.1039/C9ME00133F – volume: 220 start-page: 614 year: 2015 ident: C9CS00778D-(cit199)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2015.05.125 – volume: 466 start-page: 410 year: 2017 ident: C9CS00778D-(cit197)/*[position()=1] publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2017.06.067 – volume: 14 start-page: 1801563 year: 2018 ident: C9CS00778D-(cit179)/*[position()=1] publication-title: Small doi: 10.1002/smll.201801563 – volume: 8 start-page: 15985 year: 2017 ident: C9CS00778D-(cit84)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms15985 – volume: 25 start-page: 5463 year: 2019 ident: C9CS00778D-(cit139)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201806146 – year: 2019 ident: C9CS00778D-(cit13)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00350 – volume: 43 start-page: 3666 year: 2014 ident: C9CS00778D-(cit54)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00039K – volume: 51 start-page: 6111 year: 2015 ident: C9CS00778D-(cit232)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC00773A – volume: 253 start-page: 275 year: 2017 ident: C9CS00778D-(cit340)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2017.06.064 – volume: 86 start-page: 11459 year: 2014 ident: C9CS00778D-(cit180)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac503622n – volume: 254 start-page: 872 year: 2018 ident: C9CS00778D-(cit273)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2017.07.026 – volume: 46 start-page: 3357 year: 2017 ident: C9CS00778D-(cit55)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00108H – volume: 4 start-page: 351 year: 2013 ident: C9CS00778D-(cit263)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C2SC21181E – volume: 251 start-page: 79 year: 2017 ident: C9CS00778D-(cit301)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2017.04.014 – volume: 43 start-page: 5994 year: 2014 ident: C9CS00778D-(cit39)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00096J – volume: 139 start-page: 8098 year: 2017 ident: C9CS00778D-(cit29)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03633 – volume: 4 start-page: 6588 year: 2016 ident: C9CS00778D-(cit320)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C6TC01297C – volume: 49 start-page: 301 year: 2020 ident: C9CS00778D-(cit23)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00614D – volume: 353 start-page: 137 year: 2016 ident: C9CS00778D-(cit12)/*[position()=1] publication-title: Science doi: 10.1126/science.aaf6323 – volume: 3 start-page: 1500434 year: 2016 ident: C9CS00778D-(cit57)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201500434 – volume: 10 start-page: 24201 year: 2018 ident: C9CS00778D-(cit112)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b07377 – volume: 501 start-page: 119241 year: 2020 ident: C9CS00778D-(cit275)/*[position()=1] publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2019.119241 – volume: 46 start-page: 3242 year: 2017 ident: C9CS00778D-(cit53)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00930A – volume: 54 start-page: 9789 year: 2018 ident: C9CS00778D-(cit200)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC05459B – volume: 5 start-page: 2215 year: 2017 ident: C9CS00778D-(cit337)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA10019H – volume: 269 start-page: 110 year: 2018 ident: C9CS00778D-(cit170)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2018.05.002 |
SSID | ssj0011762 |
Score | 2.727896 |
SecondaryResourceType | review_article |
Snippet | Developing efficient sensor materials with superior performance for selective, fast and sensitive detection of gases and volatile organic compounds (VOCs) is... This review summarizes the recent advances of metal organic framework (MOF) based sensing of gases and volatile compounds. |
SourceID | osti proquest crossref rsc |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6364 |
SubjectTerms | Air monitoring air pollution Alcohols Aldehydes Aliphatic hydrocarbons Ammonia carbon Carbon disulfide Carbon oxides chemical species Construction materials coordination polymers Detection Dimethylformamide early diagnosis electrical conductivity Electrical resistivity electricity Environmental monitoring environmental protection Ferroelectricity food quality human health Hydrocarbons Hydrogen sulfide Indoor environments information sources Ketones ligands luminescence Magnetic properties magnetism metal ions monitoring nitrous oxide oxygen physicochemical properties Pollution monitoring Porosity Porous materials Sensors society sulfur dioxide surface area Switches Switching toxicity VOCs Volatile organic compounds Water vapor |
Title | Functional metal-organic frameworks as effective sensors of gases and volatile compounds |
URI | https://www.proquest.com/docview/2438963059 https://www.proquest.com/docview/2430377229 https://www.proquest.com/docview/2511196732 https://www.osti.gov/biblio/1644724 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gFe0LhMZBvICF4Qymhj5-LHqbQaUylCa6XCS-T4siGNdlqSF379jhPbaUWFBi9RlFhO5PP5XOzj8yH0jmrJuc6KkMqChTTV1BxWhqiVFlmSZEpkDX3bl1lyvqAXy3jZ6003spbqqjgVv3eeK_kfqcIzkKs5JfsPkvWdwgO4B_nCFSQM1wfJeAJGya7l_VLgRYctR5P4oF3KVWl4ZNqcDZMiVELQath1wEO8AvPV1mcGBQX93agmvdywLJWbHquvKODyO239Up_J09Je85_hd26tYLsO3azBXl7X4cxr_h9ucfq6hrvwW72RENR0c-EMqV2HgKDT7KqkG6qTJgMQdlvN8VTteGb1bVui1OEq3dCeCWkrmv-h1gfEVEUVTJSm_FAmO-PlNuxnX_PJYjrN5-PlfA_tRxA0RH20fzaef576XaVh2hDM-r9y5WoJ-9j1veWg9NegaLeCj707xwzTeCDzA_TEhg74rMXBU9RTq2fo0cgx9j1Hyw4PeAsPuMMD5iX2eMAWD3itcYMHDHjADg_Y4-EFWkzG89F5aJkzQkFJUoWKES04y2KYiSkbalHIWIGzQomMIkmGnEmZCKKSTMYiFjzOpCEikOCtRZzD_DxE_dV6pV4iPBBaaSLUIJLgOUfaEEAat04zqTOS6QC9d8OVC1tW3rCb3ORNegNh-YiNLpuh_RSgt77tbVtMZWerYzPqObiApo6xMAlfosohrqdpRAN04oSR26lY5hEFvzsB08UC9Ma_htE3u198pdZ102ZADCz-1gbCDzBJKYkCdAiC9n_ZwSNAR7tf5LdSHz3g68focTd9TlC_uqvVK3Bsq-K1xes9oPqmtw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+metal-organic+frameworks+as+effective+sensors+of+gases+and+volatile+compounds&rft.jtitle=Chemical+Society+reviews&rft.au=Li%2C+Hai-Yang&rft.au=Zhao%2C+Shu-Na&rft.au=Zang%2C+Shuang-Quan&rft.au=Li%2C+Jing&rft.date=2020-09-07&rft.issn=1460-4744&rft.eissn=1460-4744&rft.volume=49&rft.issue=17&rft.spage=6364&rft_id=info:doi/10.1039%2Fc9cs00778d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |