Functional metal-organic frameworks as effective sensors of gases and volatile compounds

Developing efficient sensor materials with superior performance for selective, fast and sensitive detection of gases and volatile organic compounds (VOCs) is essential for human health and environmental protection, through monitoring indoor and outdoor air pollutions, managing industrial processes,...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 49; no. 17; pp. 6364 - 641
Main Authors Li, Hai-Yang, Zhao, Shu-Na, Zang, Shuang-Quan, Li, Jing
Format Journal Article
LanguageEnglish
Published London Royal Society of Chemistry 07.09.2020
Royal Society of Chemistry (RSC)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing efficient sensor materials with superior performance for selective, fast and sensitive detection of gases and volatile organic compounds (VOCs) is essential for human health and environmental protection, through monitoring indoor and outdoor air pollutions, managing industrial processes, controlling food quality and assisting early diagnosis of diseases. Metal-organic frameworks (MOFs) are a unique type of crystalline and porous solid material constructed from metal nodes (metal ions or clusters) and functional organic ligands. They have been investigated extensively for possible use as high performance sensors for the detection of many different gases and VOCs in recent years, due to their large surface area, tunable pore size, functionalizable sites and intriguing properties, such as electrical conductivity, magnetism, ferroelectricity, luminescence and chromism. The high porosity of MOFs allows them to interact strongly with various analytes, including gases and VOCs, thus resulting in easily measurable responses to different physicochemical parameters. Although much of the recent work on MOF-based luminescent sensors have been summarized in several excellent reviews (up to 2018), a comprehensive overview of these materials for sensing gases and VOCs based on chemiresistive, magnetic, ferroelectric, and colorimertic mechanisms is missing. In this review, we highlight the most recent progress in developing MOF sensing and switching materials with an emphasis on sensing mechanisms based on electricity, magnetism, ferroelectricity and chromism. We provide a comprehensive analysis on the MOF-analyte interactions in these processes, which play a key role in the sensing performance of the MOF-based sensors and switches. We discuss in detail possible applications of MOF-based sensing and switching materials in detecting oxygen, water vapor, toxic industrial gases (such as hydrogen sulfide, ammonia, sulfur dioxide, nitrous oxide, carbon oxides and carbon disulfide) and VOCs (such as aromatic and aliphatic hydrocarbons, ketones, alcohols, aldehydes, chlorinated hydrocarbons and N , N ′-dimethylformamide). Overall, this review serves as a timely source of information and provides insight for the future development of advanced MOF materials as next-generation gas and VOC sensors. This review summarizes the recent advances of metal organic framework (MOF) based sensing of gases and volatile compounds.
AbstractList Developing efficient sensor materials with superior performance for selective, fast and sensitive detection of gases and volatile organic compounds (VOCs) is essential for human health and environmental protection, through monitoring indoor and outdoor air pollutions, managing industrial processes, controlling food quality and assisting early diagnosis of diseases. Metal–organic frameworks (MOFs) are a unique type of crystalline and porous solid material constructed from metal nodes (metal ions or clusters) and functional organic ligands. They have been investigated extensively for possible use as high performance sensors for the detection of many different gases and VOCs in recent years, due to their large surface area, tunable pore size, functionalizable sites and intriguing properties, such as electrical conductivity, magnetism, ferroelectricity, luminescence and chromism. The high porosity of MOFs allows them to interact strongly with various analytes, including gases and VOCs, thus resulting in easily measurable responses to different physicochemical parameters. Although much of the recent work on MOF-based luminescent sensors have been summarized in several excellent reviews (up to 2018), a comprehensive overview of these materials for sensing gases and VOCs based on chemiresistive, magnetic, ferroelectric, and colorimertic mechanisms is missing. In this review, we highlight the most recent progress in developing MOF sensing and switching materials with an emphasis on sensing mechanisms based on electricity, magnetism, ferroelectricity and chromism. We provide a comprehensive analysis on the MOF–analyte interactions in these processes, which play a key role in the sensing performance of the MOF-based sensors and switches. We discuss in detail possible applications of MOF-based sensing and switching materials in detecting oxygen, water vapor, toxic industrial gases (such as hydrogen sulfide, ammonia, sulfur dioxide, nitrous oxide, carbon oxides and carbon disulfide) and VOCs (such as aromatic and aliphatic hydrocarbons, ketones, alcohols, aldehydes, chlorinated hydrocarbons and N,N′-dimethylformamide). Overall, this review serves as a timely source of information and provides insight for the future development of advanced MOF materials as next-generation gas and VOC sensors.
Developing efficient sensor materials with superior performance for selective, fast and sensitive detection of gases and volatile organic compounds (VOCs) is essential for human health and environmental protection, through monitoring indoor and outdoor air pollutions, managing industrial processes, controlling food quality and assisting early diagnosis of diseases. Metal-organic frameworks (MOFs) are a unique type of crystalline and porous solid material constructed from metal nodes (metal ions or clusters) and functional organic ligands. They have been investigated extensively for possible use as high performance sensors for the detection of many different gases and VOCs in recent years, due to their large surface area, tunable pore size, functionalizable sites and intriguing properties, such as electrical conductivity, magnetism, ferroelectricity, luminescence and chromism. The high porosity of MOFs allows them to interact strongly with various analytes, including gases and VOCs, thus resulting in easily measurable responses to different physicochemical parameters. Although much of the recent work on MOF-based luminescent sensors have been summarized in several excellent reviews (up to 2018), a comprehensive overview of these materials for sensing gases and VOCs based on chemiresistive, magnetic, ferroelectric, and colorimertic mechanisms is missing. In this review, we highlight the most recent progress in developing MOF sensing and switching materials with an emphasis on sensing mechanisms based on electricity, magnetism, ferroelectricity and chromism. We provide a comprehensive analysis on the MOF-analyte interactions in these processes, which play a key role in the sensing performance of the MOF-based sensors and switches. We discuss in detail possible applications of MOF-based sensing and switching materials in detecting oxygen, water vapor, toxic industrial gases (such as hydrogen sulfide, ammonia, sulfur dioxide, nitrous oxide, carbon oxides and carbon disulfide) and VOCs (such as aromatic and aliphatic hydrocarbons, ketones, alcohols, aldehydes, chlorinated hydrocarbons and N,N'-dimethylformamide). Overall, this review serves as a timely source of information and provides insight for the future development of advanced MOF materials as next-generation gas and VOC sensors.Developing efficient sensor materials with superior performance for selective, fast and sensitive detection of gases and volatile organic compounds (VOCs) is essential for human health and environmental protection, through monitoring indoor and outdoor air pollutions, managing industrial processes, controlling food quality and assisting early diagnosis of diseases. Metal-organic frameworks (MOFs) are a unique type of crystalline and porous solid material constructed from metal nodes (metal ions or clusters) and functional organic ligands. They have been investigated extensively for possible use as high performance sensors for the detection of many different gases and VOCs in recent years, due to their large surface area, tunable pore size, functionalizable sites and intriguing properties, such as electrical conductivity, magnetism, ferroelectricity, luminescence and chromism. The high porosity of MOFs allows them to interact strongly with various analytes, including gases and VOCs, thus resulting in easily measurable responses to different physicochemical parameters. Although much of the recent work on MOF-based luminescent sensors have been summarized in several excellent reviews (up to 2018), a comprehensive overview of these materials for sensing gases and VOCs based on chemiresistive, magnetic, ferroelectric, and colorimertic mechanisms is missing. In this review, we highlight the most recent progress in developing MOF sensing and switching materials with an emphasis on sensing mechanisms based on electricity, magnetism, ferroelectricity and chromism. We provide a comprehensive analysis on the MOF-analyte interactions in these processes, which play a key role in the sensing performance of the MOF-based sensors and switches. We discuss in detail possible applications of MOF-based sensing and switching materials in detecting oxygen, water vapor, toxic industrial gases (such as hydrogen sulfide, ammonia, sulfur dioxide, nitrous oxide, carbon oxides and carbon disulfide) and VOCs (such as aromatic and aliphatic hydrocarbons, ketones, alcohols, aldehydes, chlorinated hydrocarbons and N,N'-dimethylformamide). Overall, this review serves as a timely source of information and provides insight for the future development of advanced MOF materials as next-generation gas and VOC sensors.
This review summarizes the recent advances of metal organic framework (MOF) based sensing of gases and volatile compounds.
Developing efficient sensor materials with superior performance for selective, fast and sensitive detection of gases and volatile organic compounds (VOCs) is essential for human health and environmental protection, through monitoring indoor and outdoor air pollutions, managing industrial processes, controlling food quality and assisting early diagnosis of diseases. Metal–organic frameworks (MOFs) are a unique type of crystalline and porous solid material constructed from metal nodes (metal ions or clusters) and functional organic ligands. They have been investigated extensively for possible use as high performance sensors for the detection of many different gases and VOCs in recent years, due to their large surface area, tunable pore size, functionalizable sites and intriguing properties, such as electrical conductivity, magnetism, ferroelectricity, luminescence and chromism. The high porosity of MOFs allows them to interact strongly with various analytes, including gases and VOCs, thus resulting in easily measurable responses to different physicochemical parameters. Although much of the recent work on MOF-based luminescent sensors have been summarized in several excellent reviews (up to 2018), a comprehensive overview of these materials for sensing gases and VOCs based on chemiresistive, magnetic, ferroelectric, and colorimertic mechanisms is missing. In this review, we highlight the most recent progress in developing MOF sensing and switching materials with an emphasis on sensing mechanisms based on electricity, magnetism, ferroelectricity and chromism. We provide a comprehensive analysis on the MOF–analyte interactions in these processes, which play a key role in the sensing performance of the MOF-based sensors and switches. We discuss in detail possible applications of MOF-based sensing and switching materials in detecting oxygen, water vapor, toxic industrial gases (such as hydrogen sulfide, ammonia, sulfur dioxide, nitrous oxide, carbon oxides and carbon disulfide) and VOCs (such as aromatic and aliphatic hydrocarbons, ketones, alcohols, aldehydes, chlorinated hydrocarbons and N , N ′-dimethylformamide). Overall, this review serves as a timely source of information and provides insight for the future development of advanced MOF materials as next-generation gas and VOC sensors.
Developing efficient sensor materials with superior performance for selective, fast and sensitive detection of gases and volatile organic compounds (VOCs) is essential for human health and environmental protection, through monitoring indoor and outdoor air pollutions, managing industrial processes, controlling food quality and assisting early diagnosis of diseases. Metal-organic frameworks (MOFs) are a unique type of crystalline and porous solid material constructed from metal nodes (metal ions or clusters) and functional organic ligands. They have been investigated extensively for possible use as high performance sensors for the detection of many different gases and VOCs in recent years, due to their large surface area, tunable pore size, functionalizable sites and intriguing properties, such as electrical conductivity, magnetism, ferroelectricity, luminescence and chromism. The high porosity of MOFs allows them to interact strongly with various analytes, including gases and VOCs, thus resulting in easily measurable responses to different physicochemical parameters. Although much of the recent work on MOF-based luminescent sensors have been summarized in several excellent reviews (up to 2018), a comprehensive overview of these materials for sensing gases and VOCs based on chemiresistive, magnetic, ferroelectric, and colorimertic mechanisms is missing. In this review, we highlight the most recent progress in developing MOF sensing and switching materials with an emphasis on sensing mechanisms based on electricity, magnetism, ferroelectricity and chromism. We provide a comprehensive analysis on the MOF-analyte interactions in these processes, which play a key role in the sensing performance of the MOF-based sensors and switches. We discuss in detail possible applications of MOF-based sensing and switching materials in detecting oxygen, water vapor, toxic industrial gases (such as hydrogen sulfide, ammonia, sulfur dioxide, nitrous oxide, carbon oxides and carbon disulfide) and VOCs (such as aromatic and aliphatic hydrocarbons, ketones, alcohols, aldehydes, chlorinated hydrocarbons and N , N ′-dimethylformamide). Overall, this review serves as a timely source of information and provides insight for the future development of advanced MOF materials as next-generation gas and VOC sensors. This review summarizes the recent advances of metal organic framework (MOF) based sensing of gases and volatile compounds.
Author Zang, Shuang-Quan
Zhao, Shu-Na
Li, Jing
Li, Hai-Yang
AuthorAffiliation Rutgers University
Green Catalysis Center, and College of Chemistry
Department of Chemistry and Chemical Biology
Zhengzhou University
AuthorAffiliation_xml – name: Zhengzhou University
– name: Rutgers University
– name: Department of Chemistry and Chemical Biology
– name: Green Catalysis Center, and College of Chemistry
Author_xml – sequence: 1
  givenname: Hai-Yang
  surname: Li
  fullname: Li, Hai-Yang
– sequence: 2
  givenname: Shu-Na
  surname: Zhao
  fullname: Zhao, Shu-Na
– sequence: 3
  givenname: Shuang-Quan
  surname: Zang
  fullname: Zang, Shuang-Quan
– sequence: 4
  givenname: Jing
  surname: Li
  fullname: Li, Jing
BackLink https://www.osti.gov/biblio/1644724$$D View this record in Osti.gov
BookMark eNqF0s1rFTEQAPAgFXytXrwLUS9FWM3XJpujPFsVCh5U8BbGfNStu8kzs1vxvzevTxSK6CmB-c0wk8kxOcolR0IecvacM2lfeOuRMWOGcIdsuNKsU0apI7JhkumOMS7ukWPEq3bjRosN-XS-Zr-MJcNE57jA1JV6CXn0NFWY4_dSvyIFpDGl2Nx1pBgzloq0JHoJGFs0B3pdJljGKVJf5l1Zc8D75G6CCeODX-cJ-Xh-9mH7prt49_rt9uVF55XUSxetTB7s0KcAxvLkP4c-SiaVDEIEycGGoL2Megi97z30Q5B66IPQWgD4QZ6QJ4e6BZfRoR-X6L_4knNr13GtlBGqodMD2tXybY24uHlEH6cJciwrOtFzzq02UvyfqtadMULYRp_eoldlre0lb9RgtWT9Xj07KF8LYo3J7eo4Q_3hOHP7pbmt3b6_Wdqrhtkt3AaC_X6WCuP095RHh5SK_nfpP_-gxR__K-52Icmf9BywjA
CitedBy_id crossref_primary_10_1016_j_foodchem_2022_135237
crossref_primary_10_1002_adfm_202106925
crossref_primary_10_1016_j_materresbull_2022_111968
crossref_primary_10_1016_j_apsusc_2022_156029
crossref_primary_10_1016_j_apsusc_2023_156788
crossref_primary_10_1016_j_jelechem_2023_117714
crossref_primary_10_1039_D3DT01317K
crossref_primary_10_1016_j_matt_2024_04_039
crossref_primary_10_1039_D3TA01930F
crossref_primary_10_1039_D1GC01690C
crossref_primary_10_1016_j_cej_2023_145934
crossref_primary_10_2139_ssrn_4003092
crossref_primary_10_1016_j_ceramint_2024_04_095
crossref_primary_10_1016_j_dyepig_2022_110578
crossref_primary_10_1039_D4DT02285H
crossref_primary_10_1007_s13738_024_03109_4
crossref_primary_10_1021_acs_inorgchem_1c03931
crossref_primary_10_1016_j_jlumin_2021_117958
crossref_primary_10_1088_1402_4896_ace564
crossref_primary_10_1016_j_jpcs_2021_110403
crossref_primary_10_1002_slct_202004806
crossref_primary_10_1016_j_snb_2025_137525
crossref_primary_10_1002_adfm_202421120
crossref_primary_10_1002_anie_202100717
crossref_primary_10_1021_acs_inorgchem_2c01130
crossref_primary_10_1021_acssensors_4c00614
crossref_primary_10_1002_ange_202201924
crossref_primary_10_1038_s41467_023_42959_z
crossref_primary_10_1016_j_ccr_2021_214237
crossref_primary_10_1016_j_yofte_2024_103671
crossref_primary_10_3390_ma17010203
crossref_primary_10_1002_adom_202100081
crossref_primary_10_1134_S2635167624600810
crossref_primary_10_1039_D3CS00147D
crossref_primary_10_1016_j_xcrp_2021_100519
crossref_primary_10_1016_j_seppur_2023_125178
crossref_primary_10_1039_D1CC06826A
crossref_primary_10_3390_ijms22073447
crossref_primary_10_1039_D4CS00997E
crossref_primary_10_1016_j_foodres_2022_111585
crossref_primary_10_1002_ange_202303500
crossref_primary_10_1016_j_poly_2022_116278
crossref_primary_10_1021_acs_cgd_0c01492
crossref_primary_10_1016_j_snb_2024_135299
crossref_primary_10_1021_acsanm_4c01795
crossref_primary_10_1007_s10965_022_02900_2
crossref_primary_10_1021_acs_inorgchem_2c01128
crossref_primary_10_1149_2754_2734_acb562
crossref_primary_10_1016_j_talanta_2024_126713
crossref_primary_10_1016_j_aac_2023_02_001
crossref_primary_10_1021_acs_chemmater_2c03426
crossref_primary_10_3390_s24216867
crossref_primary_10_1002_adsu_202200394
crossref_primary_10_2139_ssrn_4020637
crossref_primary_10_1021_acs_inorgchem_2c00270
crossref_primary_10_2139_ssrn_4016141
crossref_primary_10_1002_chem_202304334
crossref_primary_10_1016_j_mcat_2023_113420
crossref_primary_10_1039_D3DT04292H
crossref_primary_10_1039_D1DT00728A
crossref_primary_10_1070_RCR5032
crossref_primary_10_1002_chem_202100911
crossref_primary_10_1016_j_ccr_2022_214930
crossref_primary_10_1021_acs_inorgchem_4c04771
crossref_primary_10_1016_j_jallcom_2024_176998
crossref_primary_10_1002_ejic_202200204
crossref_primary_10_1016_j_snb_2024_137022
crossref_primary_10_1016_j_synthmet_2021_116890
crossref_primary_10_1021_acs_cgd_1c00606
crossref_primary_10_1021_acsmaterialslett_2c00661
crossref_primary_10_1016_j_apsusc_2023_156520
crossref_primary_10_1016_j_ccr_2021_214263
crossref_primary_10_1016_j_materresbull_2022_111754
crossref_primary_10_1016_j_ccr_2021_214264
crossref_primary_10_3390_inorganics9070058
crossref_primary_10_1016_j_apsusc_2021_151351
crossref_primary_10_1016_j_surfin_2022_102247
crossref_primary_10_1002_advs_202104374
crossref_primary_10_1016_j_ijhydene_2024_06_149
crossref_primary_10_1016_j_jhazmat_2024_134055
crossref_primary_10_1021_jacs_4c15261
crossref_primary_10_1002_anie_202318722
crossref_primary_10_1016_j_ccr_2021_214268
crossref_primary_10_1364_OME_437408
crossref_primary_10_1016_j_ccr_2022_214917
crossref_primary_10_1039_D1NJ02369A
crossref_primary_10_1039_D1CS00600B
crossref_primary_10_1016_j_poly_2022_116242
crossref_primary_10_1016_j_trac_2024_118033
crossref_primary_10_1016_j_apm_2022_01_008
crossref_primary_10_1038_s41598_022_18932_z
crossref_primary_10_1007_s12274_022_4383_6
crossref_primary_10_1021_acssensors_3c01058
crossref_primary_10_1016_j_mcat_2024_114811
crossref_primary_10_3390_cryst15040294
crossref_primary_10_1002_admi_202101629
crossref_primary_10_1039_D5CP00090D
crossref_primary_10_1016_j_ccr_2023_215043
crossref_primary_10_1016_j_jhazmat_2024_136261
crossref_primary_10_1039_D4TC02491E
crossref_primary_10_1002_admt_202100789
crossref_primary_10_1007_s10904_024_03483_9
crossref_primary_10_1016_j_cej_2022_136532
crossref_primary_10_1007_s40242_023_3228_5
crossref_primary_10_1039_D2CC05131A
crossref_primary_10_1021_acs_inorgchem_1c00871
crossref_primary_10_1016_j_apcatb_2021_120106
crossref_primary_10_1016_j_snb_2022_131384
crossref_primary_10_1002_adom_202100283
crossref_primary_10_1021_acs_inorgchem_2c00073
crossref_primary_10_6023_A22030134
crossref_primary_10_1002_tcr_202100127
crossref_primary_10_1016_j_molstruc_2025_141522
crossref_primary_10_1021_acsami_3c18549
crossref_primary_10_3390_nano11112791
crossref_primary_10_1002_ange_202217456
crossref_primary_10_1016_j_ica_2023_121435
crossref_primary_10_1039_D0DT02511A
crossref_primary_10_3390_molecules27072226
crossref_primary_10_1002_ejic_202200654
crossref_primary_10_1016_j_snb_2025_137570
crossref_primary_10_1039_D1MA00535A
crossref_primary_10_1021_acs_inorgchem_3c00739
crossref_primary_10_1002_smtd_202200470
crossref_primary_10_1016_j_molstruc_2023_135970
crossref_primary_10_1016_j_saa_2023_122637
crossref_primary_10_1021_acs_inorgchem_2c02250
crossref_primary_10_1039_D1RA03078G
crossref_primary_10_1039_D1CS00759A
crossref_primary_10_1039_D4LF00027G
crossref_primary_10_1007_s11243_024_00582_x
crossref_primary_10_1016_j_cej_2023_146634
crossref_primary_10_1039_D3TA07171E
crossref_primary_10_1021_acs_analchem_2c05816
crossref_primary_10_1039_D0DT04234J
crossref_primary_10_1039_D2DT00714B
crossref_primary_10_1016_j_snb_2021_131008
crossref_primary_10_1007_s40242_023_3058_5
crossref_primary_10_1039_D1CE00888A
crossref_primary_10_1039_D1DT03175A
crossref_primary_10_1016_j_jssc_2022_123660
crossref_primary_10_1016_j_ccr_2024_216067
crossref_primary_10_1002_ejic_202200625
crossref_primary_10_1039_D4TB00373J
crossref_primary_10_1002_smll_202402255
crossref_primary_10_1016_j_jallcom_2023_169042
crossref_primary_10_3390_s23249719
crossref_primary_10_1039_D1RA02938J
crossref_primary_10_3390_molecules26247666
crossref_primary_10_1039_D4TA00330F
crossref_primary_10_1021_acsami_1c08840
crossref_primary_10_3390_ma13235435
crossref_primary_10_1016_j_cclet_2022_107969
crossref_primary_10_1021_acsami_2c05860
crossref_primary_10_1021_jacs_0c09284
crossref_primary_10_1016_j_cej_2025_159257
crossref_primary_10_1002_advs_202200850
crossref_primary_10_1007_s41664_022_00224_0
crossref_primary_10_1021_acsmaterialslett_3c00203
crossref_primary_10_1016_j_ica_2023_121642
crossref_primary_10_1007_s10904_023_02597_w
crossref_primary_10_1021_acsami_2c15237
crossref_primary_10_1016_j_jhazmat_2023_131936
crossref_primary_10_1016_j_ica_2023_121409
crossref_primary_10_1016_j_jssc_2022_123400
crossref_primary_10_1039_D3TC02812G
crossref_primary_10_1039_D2DT02383K
crossref_primary_10_1039_D3DT01117H
crossref_primary_10_3390_nano12234208
crossref_primary_10_3390_ijerph18094645
crossref_primary_10_1021_acsami_4c15743
crossref_primary_10_1039_D2NJ00358A
crossref_primary_10_1016_j_jes_2023_07_003
crossref_primary_10_1021_acsanm_2c00998
crossref_primary_10_1016_j_jhazmat_2024_136697
crossref_primary_10_1021_acsomega_2c01869
crossref_primary_10_1016_j_saa_2021_119515
crossref_primary_10_1039_D4DT00410H
crossref_primary_10_1021_acsomega_1c00432
crossref_primary_10_1021_acs_jcim_1c01219
crossref_primary_10_1021_acsami_1c04013
crossref_primary_10_1039_D3DT03882C
crossref_primary_10_1039_D3SD00188A
crossref_primary_10_1039_D2TA00503D
crossref_primary_10_1021_acsami_1c13134
crossref_primary_10_1039_D2RA00376G
crossref_primary_10_1021_acs_iecr_4c04488
crossref_primary_10_1016_j_jhazmat_2021_125906
crossref_primary_10_1016_j_mser_2022_100714
crossref_primary_10_1039_D2NJ00444E
crossref_primary_10_1002_ange_202407102
crossref_primary_10_1016_j_molstruc_2024_140761
crossref_primary_10_1016_j_cis_2023_102864
crossref_primary_10_1016_j_mattod_2021_01_010
crossref_primary_10_1021_acsami_2c11052
crossref_primary_10_1021_acs_langmuir_3c01752
crossref_primary_10_1002_chem_202103104
crossref_primary_10_1016_j_jece_2022_107228
crossref_primary_10_1039_D2QI00949H
crossref_primary_10_1177_17475198211018981
crossref_primary_10_1016_j_mtsust_2023_100335
crossref_primary_10_1016_j_jssc_2022_123623
crossref_primary_10_1016_j_snb_2021_130129
crossref_primary_10_1016_j_dyepig_2022_110379
crossref_primary_10_1002_cptc_202200200
crossref_primary_10_1021_acs_inorgchem_2c04053
crossref_primary_10_1016_j_matt_2021_03_022
crossref_primary_10_1016_j_saa_2023_123585
crossref_primary_10_1016_j_cej_2023_141364
crossref_primary_10_1016_j_jssc_2022_122988
crossref_primary_10_1039_D3AN00043E
crossref_primary_10_1016_j_ccr_2022_214995
crossref_primary_10_3390_biom13071154
crossref_primary_10_1039_D2TA03154J
crossref_primary_10_1016_j_trac_2024_117558
crossref_primary_10_1021_acs_inorgchem_3c02070
crossref_primary_10_1021_acssensors_4c03085
crossref_primary_10_1016_j_jece_2021_107122
crossref_primary_10_1016_j_jssc_2022_123828
crossref_primary_10_1016_j_saa_2023_123579
crossref_primary_10_1016_j_surfin_2024_104394
crossref_primary_10_1016_j_surfin_2024_105481
crossref_primary_10_1021_jacsau_2c00069
crossref_primary_10_1002_mame_202200469
crossref_primary_10_1016_j_apsusc_2022_156286
crossref_primary_10_1038_s41524_024_01277_8
crossref_primary_10_1002_anie_202202597
crossref_primary_10_1149_1945_7111_ac61be
crossref_primary_10_1039_D3QI02466K
crossref_primary_10_1016_j_jiec_2022_12_005
crossref_primary_10_1002_adfm_202203224
crossref_primary_10_1016_j_seppur_2023_126235
crossref_primary_10_1016_j_seppur_2024_126534
crossref_primary_10_1016_j_molstruc_2024_140539
crossref_primary_10_1039_D2QI00835A
crossref_primary_10_1021_jacs_3c03036
crossref_primary_10_1016_j_snb_2024_136817
crossref_primary_10_1021_acssensors_4c01120
crossref_primary_10_1021_acsnano_4c00208
crossref_primary_10_1021_acsnano_1c09301
crossref_primary_10_1039_D4CE00332B
crossref_primary_10_1039_D3CP01865B
crossref_primary_10_1016_j_matt_2024_07_013
crossref_primary_10_1016_j_molstruc_2023_136172
crossref_primary_10_1039_D1RA03106F
crossref_primary_10_1039_D2CP01139E
crossref_primary_10_1016_j_molstruc_2024_138875
crossref_primary_10_1021_acsami_1c03410
crossref_primary_10_1039_D2QI00859A
crossref_primary_10_1016_j_ceramint_2022_09_352
crossref_primary_10_1002_cnl2_153
crossref_primary_10_1038_s41467_024_54872_0
crossref_primary_10_1039_D1DT03502A
crossref_primary_10_3390_en15238908
crossref_primary_10_1021_acs_cgd_1c00499
crossref_primary_10_1016_j_matchemphys_2021_125661
crossref_primary_10_1016_j_ccr_2023_215558
crossref_primary_10_1002_smll_202203715
crossref_primary_10_1021_acs_inorgchem_2c02915
crossref_primary_10_1039_D3DT03223J
crossref_primary_10_1016_j_chemosphere_2022_133772
crossref_primary_10_1039_D3TC00609C
crossref_primary_10_1002_anie_202419195
crossref_primary_10_1039_D3NR01723K
crossref_primary_10_1007_s13738_024_03026_6
crossref_primary_10_1016_j_poly_2022_115759
crossref_primary_10_1016_j_ccr_2020_213747
crossref_primary_10_1021_acsami_4c03389
crossref_primary_10_1002_advs_202400207
crossref_primary_10_1039_D3TA00582H
crossref_primary_10_1021_acsanm_2c05361
crossref_primary_10_1016_j_surfin_2024_104232
crossref_primary_10_1021_acsami_1c16506
crossref_primary_10_1039_D2RA06034E
crossref_primary_10_1016_j_nantod_2024_102227
crossref_primary_10_1016_j_microc_2025_112937
crossref_primary_10_1088_2631_8695_ada72b
crossref_primary_10_1039_D4NJ03925D
crossref_primary_10_1039_D3NJ05251F
crossref_primary_10_1002_admi_202102086
crossref_primary_10_1002_slct_202202308
crossref_primary_10_1016_j_trac_2023_117233
crossref_primary_10_1007_s11581_024_05406_7
crossref_primary_10_1021_acs_jpcc_4c00944
crossref_primary_10_1002_ange_202202207
crossref_primary_10_1016_j_apsusc_2023_157075
crossref_primary_10_1016_j_ceramint_2022_10_135
crossref_primary_10_1039_D1MA00341K
crossref_primary_10_1002_asia_202100482
crossref_primary_10_1039_D2CC03330E
crossref_primary_10_1002_aelm_202100271
crossref_primary_10_1021_acs_analchem_2c05629
crossref_primary_10_1039_D4NR02168A
crossref_primary_10_3390_pharmaceutics15010010
crossref_primary_10_1016_j_carbpol_2022_120359
crossref_primary_10_1039_D2CC04334C
crossref_primary_10_2139_ssrn_4172129
crossref_primary_10_2139_ssrn_4013431
crossref_primary_10_1016_j_snb_2021_130466
crossref_primary_10_1039_D2NJ06066C
crossref_primary_10_1007_s10870_022_00949_x
crossref_primary_10_3390_polym16182643
crossref_primary_10_1039_D2SC04898A
crossref_primary_10_1021_acssensors_3c00428
crossref_primary_10_1002_chem_202102413
crossref_primary_10_1039_D3TC00806A
crossref_primary_10_1016_j_jcis_2022_07_136
crossref_primary_10_1016_j_cclet_2023_109407
crossref_primary_10_1016_j_inoche_2021_108664
crossref_primary_10_3390_catal12030294
crossref_primary_10_3390_app12031574
crossref_primary_10_1002_advs_202308483
crossref_primary_10_1039_D0TA12500H
crossref_primary_10_1002_anie_202217456
crossref_primary_10_1002_agt2_145
crossref_primary_10_1039_D1SC02370E
crossref_primary_10_1021_acs_cgd_1c01148
crossref_primary_10_1039_D1RA08174H
crossref_primary_10_1039_D0RA09298C
crossref_primary_10_1021_jacs_1c11507
crossref_primary_10_1021_acs_cgd_2c00080
crossref_primary_10_1039_D2CC04510A
crossref_primary_10_3390_cryst12020261
crossref_primary_10_1016_j_envint_2023_107928
crossref_primary_10_1016_j_ccr_2021_213845
crossref_primary_10_1016_j_fuel_2022_124724
crossref_primary_10_1016_j_poly_2021_115173
crossref_primary_10_3390_chemosensors9080226
crossref_primary_10_1016_j_ceramint_2023_05_140
crossref_primary_10_1016_j_inoche_2025_113978
crossref_primary_10_1016_j_ccr_2022_214595
crossref_primary_10_1039_D2QI00768A
crossref_primary_10_1016_j_envres_2023_117449
crossref_primary_10_1016_j_tifs_2023_06_016
crossref_primary_10_1016_j_jorganchem_2024_123233
crossref_primary_10_1016_j_microc_2022_107501
crossref_primary_10_1039_D0NR09167G
crossref_primary_10_1016_j_saa_2023_123062
crossref_primary_10_1002_chem_202300554
crossref_primary_10_1016_j_heliyon_2023_e23840
crossref_primary_10_1016_j_surfin_2022_101803
crossref_primary_10_1016_j_cclet_2023_108779
crossref_primary_10_1002_adfm_202402173
crossref_primary_10_3390_molecules28114481
crossref_primary_10_1002_cplu_202200303
crossref_primary_10_1021_acs_accounts_1c00615
crossref_primary_10_1016_j_apcatb_2022_121751
crossref_primary_10_1080_10643389_2022_2050161
crossref_primary_10_1016_j_jhazmat_2022_128967
crossref_primary_10_1039_D2CP03226K
crossref_primary_10_1016_j_jphotochem_2023_114727
crossref_primary_10_1039_D4DT01014K
crossref_primary_10_1039_D2CS00761D
crossref_primary_10_1016_j_mtcomm_2023_107217
crossref_primary_10_1016_j_trac_2023_117425
crossref_primary_10_1021_acs_jpclett_2c01429
crossref_primary_10_1021_acs_energyfuels_2c00664
crossref_primary_10_54738_MI_2022_2702
crossref_primary_10_1109_JSEN_2024_3414127
crossref_primary_10_1002_admt_202101252
crossref_primary_10_1002_aenm_202402278
crossref_primary_10_1039_D2DT00007E
crossref_primary_10_1002_adsr_202300027
crossref_primary_10_1002_chem_202005166
crossref_primary_10_1016_j_cej_2023_143927
crossref_primary_10_1021_acs_nanolett_3c01723
crossref_primary_10_1016_j_jelechem_2024_118362
crossref_primary_10_1021_acsami_1c24759
crossref_primary_10_1039_D0AY02193H
crossref_primary_10_1039_D2TA07938K
crossref_primary_10_1107_S2052520623001105
crossref_primary_10_1039_D2TC01949C
crossref_primary_10_1002_chem_202402477
crossref_primary_10_1021_acs_inorgchem_1c02794
crossref_primary_10_1002_slct_202404692
crossref_primary_10_1016_j_aca_2024_343307
crossref_primary_10_1016_j_ccr_2024_215657
crossref_primary_10_1002_ange_202100717
crossref_primary_10_1016_j_reactfunctpolym_2024_105918
crossref_primary_10_1039_D1TC01342D
crossref_primary_10_1002_anie_202201924
crossref_primary_10_1016_j_jallcom_2021_160115
crossref_primary_10_1039_D4DT01690D
crossref_primary_10_3389_fenrg_2022_936493
crossref_primary_10_1002_anie_202407102
crossref_primary_10_1016_j_jssc_2023_124335
crossref_primary_10_1002_adfm_202304473
crossref_primary_10_1016_j_jssc_2021_121985
crossref_primary_10_3390_chemosensors9110316
crossref_primary_10_1039_D0CC06096H
crossref_primary_10_1039_D3RA00283G
crossref_primary_10_1016_j_nanoen_2022_108149
crossref_primary_10_1021_acsami_2c10573
crossref_primary_10_1039_D3DT04379G
crossref_primary_10_1039_D4TC02735C
crossref_primary_10_1021_acs_nanolett_1c02649
crossref_primary_10_1016_j_jmst_2024_03_080
crossref_primary_10_1016_j_jcis_2022_07_185
crossref_primary_10_1016_j_jssc_2021_121970
crossref_primary_10_1016_j_cej_2022_137780
crossref_primary_10_1002_agt2_518
crossref_primary_10_1021_acs_accounts_0c00695
crossref_primary_10_1039_D4TC00862F
crossref_primary_10_1016_j_jssc_2021_122820
crossref_primary_10_1039_D4MA01169D
crossref_primary_10_1002_ange_202419195
crossref_primary_10_1016_j_poly_2024_117204
crossref_primary_10_3390_molecules27072131
crossref_primary_10_1039_D1CY00663K
crossref_primary_10_1002_asia_202100638
crossref_primary_10_1021_acs_cgd_1c00672
crossref_primary_10_3390_s21020440
crossref_primary_10_1002_admt_202000883
crossref_primary_10_1016_j_matchemphys_2024_129225
crossref_primary_10_1016_j_jhazmat_2021_126443
crossref_primary_10_1016_j_talanta_2023_125201
crossref_primary_10_1016_j_talo_2024_100329
crossref_primary_10_3390_molecules27165149
crossref_primary_10_1021_acs_accounts_4c00469
crossref_primary_10_1039_D4TC00091A
crossref_primary_10_1021_acssensors_2c02408
crossref_primary_10_1016_j_lwt_2024_116684
crossref_primary_10_1039_D1NJ05135K
crossref_primary_10_1016_j_snb_2022_133113
crossref_primary_10_1007_s11172_023_3821_3
crossref_primary_10_1142_S1793604723400192
crossref_primary_10_1021_acs_inorgchem_3c02776
crossref_primary_10_1016_j_snb_2022_132094
crossref_primary_10_1016_j_trac_2022_116644
crossref_primary_10_1039_D1TA10008D
crossref_primary_10_1016_j_molstruc_2023_136531
crossref_primary_10_1039_D1CE01361K
crossref_primary_10_1021_jacs_4c05879
crossref_primary_10_1021_acsnano_4c18848
crossref_primary_10_3390_chemosensors12030042
crossref_primary_10_1002_ange_202502066
crossref_primary_10_1021_acsnano_1c06402
crossref_primary_10_1016_j_ccr_2024_215859
crossref_primary_10_1021_acs_inorgchem_4c01885
crossref_primary_10_1021_acs_analchem_0c05040
crossref_primary_10_1016_j_cej_2024_154294
crossref_primary_10_1021_acs_inorgchem_3c02785
crossref_primary_10_1039_D2TA04842F
crossref_primary_10_1039_D3RA00966A
crossref_primary_10_1039_D1MH00609F
crossref_primary_10_3390_molecules27238599
crossref_primary_10_1039_D3DT01878D
crossref_primary_10_1039_D4MH00538D
crossref_primary_10_1021_acs_iecr_1c01266
crossref_primary_10_1002_smll_202305024
crossref_primary_10_1039_D0DT04403B
crossref_primary_10_1039_D4DT00739E
crossref_primary_10_1016_j_carbon_2021_04_080
crossref_primary_10_1016_j_molstruc_2022_134086
crossref_primary_10_1021_acs_jpcc_2c00598
crossref_primary_10_1016_j_jssc_2022_123154
crossref_primary_10_1016_j_colsurfa_2023_132468
crossref_primary_10_1002_cphc_202300207
crossref_primary_10_1016_j_ccr_2020_213743
crossref_primary_10_1016_j_cjsc_2024_100251
crossref_primary_10_1039_D2RA06038H
crossref_primary_10_1016_j_ccr_2020_213738
crossref_primary_10_1039_D3RA05573F
crossref_primary_10_1002_admi_202102441
crossref_primary_10_61186_ijop_17_2_185
crossref_primary_10_1016_j_snb_2023_134778
crossref_primary_10_1016_j_seppur_2023_123512
crossref_primary_10_1016_j_jssc_2022_123169
crossref_primary_10_1016_j_surfin_2023_103698
crossref_primary_10_3390_en15062023
crossref_primary_10_1016_j_molstruc_2023_135458
crossref_primary_10_1016_j_aca_2022_339509
crossref_primary_10_1021_acs_cgd_2c01552
crossref_primary_10_1039_D2TC00265E
crossref_primary_10_1039_D3TA07024G
crossref_primary_10_1002_adom_202403564
crossref_primary_10_1016_j_cej_2024_150917
crossref_primary_10_1016_j_jssc_2023_124509
crossref_primary_10_1039_D4TA00959B
crossref_primary_10_1016_j_ccr_2022_214611
crossref_primary_10_1016_j_nanoms_2023_02_001
crossref_primary_10_1515_revic_2023_0024
crossref_primary_10_1002_adfm_202413871
crossref_primary_10_1021_acs_jpcc_2c01030
crossref_primary_10_1021_jacs_3c09017
crossref_primary_10_1016_j_saa_2022_121390
crossref_primary_10_1002_smll_202403629
crossref_primary_10_1021_acs_inorgchem_2c03445
crossref_primary_10_1016_j_saa_2022_122244
crossref_primary_10_1039_D3CE00228D
crossref_primary_10_1016_j_ccr_2021_214102
crossref_primary_10_1016_j_seppur_2023_124193
crossref_primary_10_1021_acsapm_3c02685
crossref_primary_10_1021_acs_chemmater_1c01723
crossref_primary_10_1016_j_micromeso_2023_112722
crossref_primary_10_1002_ange_202211850
crossref_primary_10_1016_j_esci_2024_100231
crossref_primary_10_1134_S263516762360133X
crossref_primary_10_1021_acsaem_2c02972
crossref_primary_10_2139_ssrn_4201268
crossref_primary_10_1016_j_envres_2022_113164
crossref_primary_10_1002_smll_202207547
crossref_primary_10_1134_S1070328422070041
crossref_primary_10_1016_j_apsusc_2024_161289
crossref_primary_10_3390_membranes11030176
crossref_primary_10_1016_j_jssc_2022_123119
crossref_primary_10_1063_5_0202175
crossref_primary_10_1021_acs_jpcc_1c08474
crossref_primary_10_1002_smll_202411264
crossref_primary_10_1007_s11082_024_07348_w
crossref_primary_10_1016_j_snb_2022_131466
crossref_primary_10_1002_adfm_202401421
crossref_primary_10_1002_cnma_202100226
crossref_primary_10_1002_smll_202204023
crossref_primary_10_1039_D4TC04574B
crossref_primary_10_1002_ange_202204066
crossref_primary_10_1039_D3NA00169E
crossref_primary_10_1002_ange_202207579
crossref_primary_10_1016_j_mtnano_2022_100293
crossref_primary_10_1016_j_jmrt_2022_07_006
crossref_primary_10_1016_j_ccr_2024_216360
crossref_primary_10_1007_s00604_025_07055_7
crossref_primary_10_1002_anie_202303500
crossref_primary_10_1016_j_materresbull_2022_111881
crossref_primary_10_1016_j_cej_2021_134170
crossref_primary_10_1016_j_dyepig_2023_111607
crossref_primary_10_1016_j_molstruc_2024_140482
crossref_primary_10_1002_adom_202302405
crossref_primary_10_1016_j_clay_2022_106774
crossref_primary_10_1021_acs_cgd_3c00181
crossref_primary_10_1016_j_cclet_2024_110111
crossref_primary_10_1016_j_snb_2023_134832
crossref_primary_10_1002_cnma_202100400
crossref_primary_10_1016_j_jssc_2022_123346
crossref_primary_10_1016_j_snb_2022_132120
crossref_primary_10_1016_j_cej_2023_142503
crossref_primary_10_1039_D0QI01032D
crossref_primary_10_1039_D2MA00389A
crossref_primary_10_1039_D4CC02919D
crossref_primary_10_1016_j_inoche_2022_109220
crossref_primary_10_3390_bios15030132
crossref_primary_10_1002_smm2_1046
crossref_primary_10_1016_j_micromeso_2024_113299
crossref_primary_10_1002_adfm_202401631
crossref_primary_10_1016_j_jssc_2022_123550
crossref_primary_10_1021_acs_chemrev_2c00270
crossref_primary_10_1016_j_cej_2024_156184
crossref_primary_10_1039_D3TC03053A
crossref_primary_10_1016_j_dyepig_2021_109393
crossref_primary_10_1016_j_molliq_2022_118539
crossref_primary_10_1021_acs_inorgchem_4c04872
crossref_primary_10_1016_j_snb_2024_136073
crossref_primary_10_3390_molecules26237103
crossref_primary_10_3390_s21165502
crossref_primary_10_1016_j_ijhydene_2022_01_003
crossref_primary_10_1002_zaac_202400065
crossref_primary_10_1016_j_poly_2024_116952
crossref_primary_10_1039_D2QI01234K
crossref_primary_10_1021_acs_inorgchem_2c03226
crossref_primary_10_1021_jacs_2c07692
crossref_primary_10_1021_acsnanoscienceau_3c00024
crossref_primary_10_1016_j_ccr_2024_216320
crossref_primary_10_1021_acssuschemeng_1c01527
crossref_primary_10_1021_jacsau_5c00092
crossref_primary_10_1021_acs_chemmater_2c01567
crossref_primary_10_1039_D1TC01857D
crossref_primary_10_1039_D3DT02633G
crossref_primary_10_1039_D0CE01649G
crossref_primary_10_1016_j_foodchem_2021_131504
crossref_primary_10_1021_acsami_2c10272
crossref_primary_10_1080_00958972_2022_2089028
crossref_primary_10_1002_adom_202400692
crossref_primary_10_1039_D1DT03213E
crossref_primary_10_1016_j_coesh_2023_100517
crossref_primary_10_1016_j_ccr_2022_214694
crossref_primary_10_1016_j_commatsci_2023_112275
crossref_primary_10_1002_asia_202400912
crossref_primary_10_1002_anie_202202207
crossref_primary_10_1016_j_molstruc_2022_133346
crossref_primary_10_1039_D3CP00670K
crossref_primary_10_3390_chemosensors10080290
crossref_primary_10_3390_chemosensors10080297
crossref_primary_10_1016_j_cclet_2023_108875
crossref_primary_10_1021_acs_inorgchem_1c00936
crossref_primary_10_1016_j_seppur_2024_126485
crossref_primary_10_1039_D2CC02738K
crossref_primary_10_1016_j_tifs_2023_104297
crossref_primary_10_1016_j_snb_2024_135793
crossref_primary_10_1007_s41061_022_00367_9
crossref_primary_10_1039_D3RA06710F
crossref_primary_10_1021_acsomega_4c06270
crossref_primary_10_1002_anie_202502066
crossref_primary_10_1016_j_snb_2021_131133
crossref_primary_10_2139_ssrn_4059854
crossref_primary_10_3390_s22030895
crossref_primary_10_1016_j_molstruc_2022_133323
crossref_primary_10_1039_D3NJ04122K
crossref_primary_10_1021_acs_langmuir_3c02939
crossref_primary_10_1016_j_aca_2023_341990
crossref_primary_10_1039_D3CS00688C
crossref_primary_10_1016_j_microc_2023_109297
crossref_primary_10_1002_ange_202318722
crossref_primary_10_1002_aoc_7892
crossref_primary_10_1016_j_jwpe_2024_105859
crossref_primary_10_1039_D2CE01382G
crossref_primary_10_54097_hset_v6i_930
crossref_primary_10_1021_jacs_3c08583
crossref_primary_10_1016_j_inoche_2024_113726
crossref_primary_10_1016_j_jcis_2024_07_083
crossref_primary_10_1109_JSEN_2022_3170930
crossref_primary_10_2139_ssrn_4123047
crossref_primary_10_1107_S2053229620016411
crossref_primary_10_1016_j_jssc_2022_123528
crossref_primary_10_1021_acsomega_2c00663
crossref_primary_10_1002_smll_202311448
crossref_primary_10_1016_j_matchemphys_2023_128517
crossref_primary_10_1039_D1TC03197J
crossref_primary_10_1016_j_molstruc_2024_138384
crossref_primary_10_1002_jssc_202001172
crossref_primary_10_1039_D4TC01159G
crossref_primary_10_1039_D0DT03069D
crossref_primary_10_3390_en14164751
crossref_primary_10_1016_j_inoche_2024_112884
crossref_primary_10_1016_j_poly_2021_115438
crossref_primary_10_1002_zaac_202100152
crossref_primary_10_1021_acs_iecr_1c01963
crossref_primary_10_1016_j_checat_2022_08_005
crossref_primary_10_1021_acs_chemmater_4c01497
crossref_primary_10_1016_j_jece_2024_112497
crossref_primary_10_3390_chemosensors11040208
crossref_primary_10_1016_j_jssc_2022_123739
crossref_primary_10_1021_acsami_3c06864
crossref_primary_10_1039_D1CE01416A
crossref_primary_10_1039_D3TA08099D
crossref_primary_10_1016_j_ccr_2024_216398
crossref_primary_10_1039_D3DT01691A
crossref_primary_10_3390_molecules29184495
crossref_primary_10_1016_j_microc_2024_109992
crossref_primary_10_1016_j_chemosphere_2022_135467
crossref_primary_10_1039_D4RA04618H
crossref_primary_10_1016_j_jhazmat_2022_130422
crossref_primary_10_3390_cryst13060939
crossref_primary_10_1021_acsaelm_2c01476
crossref_primary_10_1039_D0QI01407A
crossref_primary_10_1016_j_snb_2024_136696
crossref_primary_10_1016_j_scib_2022_05_009
crossref_primary_10_1016_j_snb_2024_135354
crossref_primary_10_1021_acsmaterialslett_2c00129
crossref_primary_10_1039_D1TC02190G
crossref_primary_10_1016_j_ccr_2022_214645
crossref_primary_10_1016_j_carbpol_2023_121045
crossref_primary_10_1039_D3DT01583A
crossref_primary_10_1002_adma_202207741
crossref_primary_10_1039_D2CS00585A
crossref_primary_10_3390_nano13233041
crossref_primary_10_1016_j_matt_2022_05_032
crossref_primary_10_1021_acs_inorgchem_1c03179
crossref_primary_10_1016_j_jssc_2021_122101
crossref_primary_10_1002_adfm_202300735
crossref_primary_10_3390_polym15081833
crossref_primary_10_1039_D1RA06533E
crossref_primary_10_5004_dwt_2023_29356
crossref_primary_10_1021_acsomega_2c00690
crossref_primary_10_1002_adfm_202422378
crossref_primary_10_1002_smll_202407880
crossref_primary_10_1039_D2CS00257D
crossref_primary_10_1039_D3RA08013G
crossref_primary_10_1021_jacsau_4c00259
crossref_primary_10_1016_j_trac_2024_117679
crossref_primary_10_1002_adom_202303126
crossref_primary_10_1021_acs_jpcc_3c05025
crossref_primary_10_3390_s24216931
crossref_primary_10_1016_j_saa_2023_122369
crossref_primary_10_1021_acsabm_2c00541
crossref_primary_10_1016_j_snb_2024_136232
crossref_primary_10_1039_D2DT00089J
crossref_primary_10_1016_j_jcis_2024_03_105
crossref_primary_10_1039_D4NJ05358C
crossref_primary_10_1021_acsami_2c00089
crossref_primary_10_1039_D1SC05594A
crossref_primary_10_1016_j_jiec_2023_08_025
crossref_primary_10_1039_D1CE01308D
crossref_primary_10_1002_ange_202420882
crossref_primary_10_1016_j_ccr_2024_216161
crossref_primary_10_1021_acs_inorgchem_3c04380
crossref_primary_10_1039_D3TA02482B
crossref_primary_10_1016_j_sna_2022_113845
crossref_primary_10_1016_j_jhazmat_2022_128321
crossref_primary_10_1039_D1TA08226D
crossref_primary_10_1016_j_jssc_2021_122561
crossref_primary_10_1002_ange_202202597
crossref_primary_10_1016_j_molstruc_2022_132411
crossref_primary_10_1021_acs_chemrev_1c00243
crossref_primary_10_1039_D2RA04063H
crossref_primary_10_1039_D2CE01507B
crossref_primary_10_1039_D1QI00873K
crossref_primary_10_1016_j_jece_2023_111516
crossref_primary_10_1016_j_trac_2024_117656
crossref_primary_10_3390_cryst14070626
crossref_primary_10_1002_adma_202309570
crossref_primary_10_1021_acs_cgd_4c00192
crossref_primary_10_1016_j_inoche_2024_112455
crossref_primary_10_26599_NR_2025_94907229
crossref_primary_10_1021_acs_inorgchem_0c02629
crossref_primary_10_1039_D3QI01890C
crossref_primary_10_1016_j_matdes_2021_110243
crossref_primary_10_3390_gels8080464
crossref_primary_10_1021_acs_inorgchem_1c01191
crossref_primary_10_1021_acs_langmuir_4c02502
crossref_primary_10_1016_j_cclet_2024_110606
crossref_primary_10_1007_s40820_023_01047_z
crossref_primary_10_1039_D2TB00341D
crossref_primary_10_3390_chemosensors13030113
crossref_primary_10_1016_j_snb_2022_133085
crossref_primary_10_1038_s42004_021_00522_1
crossref_primary_10_1016_j_matt_2021_10_016
crossref_primary_10_1016_j_snb_2022_133088
crossref_primary_10_1039_D4CP03497J
crossref_primary_10_1039_D4CC00546E
crossref_primary_10_1016_j_heliyon_2024_e40306
crossref_primary_10_1016_j_cclet_2022_05_046
crossref_primary_10_1007_s41664_022_00220_4
crossref_primary_10_1016_j_jssc_2023_124084
crossref_primary_10_1038_s41596_023_00810_1
crossref_primary_10_1360_SSC_2024_0191
crossref_primary_10_1002_zaac_202200379
crossref_primary_10_3390_nano12172965
crossref_primary_10_1039_D1DT01860D
crossref_primary_10_1186_s12951_021_01207_6
crossref_primary_10_1016_j_ssc_2023_115120
crossref_primary_10_1002_smll_202005327
crossref_primary_10_1016_j_inoche_2021_108574
crossref_primary_10_1002_ange_202410411
crossref_primary_10_1002_jssc_202200836
crossref_primary_10_1016_j_cclet_2021_11_002
crossref_primary_10_1016_j_talanta_2024_127498
crossref_primary_10_1039_D1DT03976H
crossref_primary_10_2139_ssrn_4073640
crossref_primary_10_1016_j_colsurfa_2022_129477
crossref_primary_10_1016_j_sna_2021_113296
crossref_primary_10_1039_D1CE00245G
crossref_primary_10_1002_chem_202302835
crossref_primary_10_1039_D3CE00398A
crossref_primary_10_1016_j_ccr_2020_213682
crossref_primary_10_3390_chemosensors10120511
crossref_primary_10_1016_j_snb_2021_130513
crossref_primary_10_1016_j_snb_2022_131967
crossref_primary_10_1016_j_poly_2021_115284
crossref_primary_10_1016_j_talanta_2025_127764
crossref_primary_10_1021_acs_jchemed_2c00922
crossref_primary_10_1016_j_susmat_2021_e00378
crossref_primary_10_1016_j_ica_2022_120979
crossref_primary_10_1016_j_eurpolymj_2023_112261
crossref_primary_10_1002_cplu_202200445
crossref_primary_10_1021_acsami_3c11385
crossref_primary_10_1021_acs_cgd_1c01268
crossref_primary_10_1016_j_molstruc_2023_136009
crossref_primary_10_1016_j_talanta_2023_124897
crossref_primary_10_1002_adfm_202407702
crossref_primary_10_1002_asia_202100303
crossref_primary_10_3390_molecules27010202
crossref_primary_10_1002_adfm_202300105
crossref_primary_10_1021_acs_analchem_3c01634
crossref_primary_10_1039_D2QI02163C
crossref_primary_10_1039_D4TA02438A
crossref_primary_10_1016_j_inoche_2021_108550
crossref_primary_10_1016_j_cclet_2023_108669
crossref_primary_10_1039_D3TA07163D
crossref_primary_10_3390_molecules28248092
crossref_primary_10_1016_j_micromeso_2021_111319
crossref_primary_10_1021_acs_chemmater_1c02451
crossref_primary_10_1039_D1QM00211B
crossref_primary_10_1007_s12274_024_6444_5
crossref_primary_10_1021_acs_inorgchem_1c03334
crossref_primary_10_1016_j_fct_2021_112312
crossref_primary_10_1016_j_cej_2023_147990
crossref_primary_10_1016_j_cej_2025_160075
crossref_primary_10_1039_D3CE00001J
crossref_primary_10_1016_j_tifs_2022_04_008
crossref_primary_10_1016_j_jssc_2021_122746
crossref_primary_10_1039_D3CC01685D
crossref_primary_10_1016_j_apenergy_2022_120450
crossref_primary_10_1007_s10965_022_03415_6
crossref_primary_10_1021_acs_inorgchem_1c02499
crossref_primary_10_1016_j_snb_2023_135106
crossref_primary_10_1039_D4DT02551B
crossref_primary_10_1016_j_ces_2024_120280
crossref_primary_10_1002_smll_202303580
crossref_primary_10_1016_j_molstruc_2023_137119
crossref_primary_10_1002_idm2_12007
crossref_primary_10_1016_j_chemosphere_2022_134516
crossref_primary_10_1002_chem_202300686
crossref_primary_10_1007_s12034_024_03249_6
crossref_primary_10_1002_cjoc_202401056
crossref_primary_10_1039_D1TB02796D
crossref_primary_10_1007_s12274_022_4306_6
crossref_primary_10_1039_D2TB01787C
crossref_primary_10_1016_j_atmosenv_2023_119657
crossref_primary_10_1016_j_scib_2024_01_016
crossref_primary_10_1039_D0DT03388J
crossref_primary_10_1016_j_jcis_2022_06_007
crossref_primary_10_1021_acs_inorgchem_3c03941
crossref_primary_10_1002_anie_202207579
crossref_primary_10_15826_chimtech_2022_9_3_11
crossref_primary_10_1039_D1CS00891A
crossref_primary_10_1016_j_trac_2020_116163
crossref_primary_10_1039_D0CE01802C
crossref_primary_10_1039_D4MH00507D
crossref_primary_10_1016_j_jssc_2022_123093
crossref_primary_10_1021_acsmaterialslett_4c01728
crossref_primary_10_1016_j_ccr_2023_215279
crossref_primary_10_1021_acs_accounts_1c00530
crossref_primary_10_1039_D3SD00214D
crossref_primary_10_1002_anie_202410411
crossref_primary_10_1016_j_mtener_2020_100618
crossref_primary_10_1039_D2CC06088D
crossref_primary_10_1002_asia_202400106
crossref_primary_10_1016_j_rinp_2024_107770
crossref_primary_10_1149_1945_7111_abfcda
crossref_primary_10_1021_acsami_4c10628
crossref_primary_10_1016_j_ultsonch_2022_106202
crossref_primary_10_2139_ssrn_4063437
crossref_primary_10_1016_j_enchem_2021_100067
crossref_primary_10_3390_ijms23137121
crossref_primary_10_2139_ssrn_3995978
crossref_primary_10_1016_j_jssc_2021_122705
crossref_primary_10_1007_s11426_023_1822_6
crossref_primary_10_1116_6_0002229
crossref_primary_10_1002_elan_202300064
crossref_primary_10_1039_D1DT03666A
crossref_primary_10_1016_j_jssc_2023_124002
crossref_primary_10_1021_acs_analchem_2c05119
crossref_primary_10_1002_tcr_202300350
crossref_primary_10_1039_D3DT03363E
crossref_primary_10_3390_mi13091495
crossref_primary_10_1007_s10853_020_05707_y
crossref_primary_10_2139_ssrn_4003127
crossref_primary_10_3390_ma14154236
crossref_primary_10_1007_s00604_025_06969_6
crossref_primary_10_1039_D1CE00399B
crossref_primary_10_1039_D3SC06909E
crossref_primary_10_1016_j_jece_2023_111112
crossref_primary_10_1021_acs_inorgchem_2c03707
crossref_primary_10_3390_molecules28124593
crossref_primary_10_1142_S1793604723500200
crossref_primary_10_1002_anie_202204066
crossref_primary_10_1039_D4DT01709A
crossref_primary_10_1007_s10853_023_08468_6
crossref_primary_10_1016_j_apsusc_2022_153129
crossref_primary_10_1016_j_colsurfa_2021_127851
crossref_primary_10_3390_bios12020051
crossref_primary_10_1002_slct_202301525
crossref_primary_10_1016_j_microc_2022_107688
crossref_primary_10_3390_molecules27217363
crossref_primary_10_1002_anie_202420882
crossref_primary_10_1021_acs_chemmater_2c01753
crossref_primary_10_1021_acsami_2c02607
crossref_primary_10_1016_j_chemosphere_2022_134933
crossref_primary_10_1016_j_chemosphere_2022_134932
crossref_primary_10_1021_acsomega_3c06533
crossref_primary_10_1039_D1TA04444C
crossref_primary_10_1016_j_apsusc_2022_155772
crossref_primary_10_1021_acsanm_2c04301
crossref_primary_10_1039_D4TC03702B
crossref_primary_10_1016_j_xcrp_2023_101656
crossref_primary_10_1021_acsami_2c22626
crossref_primary_10_3390_inorganics12010021
crossref_primary_10_1021_acs_inorgchem_1c01310
crossref_primary_10_1021_acs_inorgchem_1c01311
crossref_primary_10_1021_acsaem_4c00170
crossref_primary_10_1016_j_snb_2023_134444
crossref_primary_10_1021_acs_cgd_3c00352
crossref_primary_10_1016_j_ccr_2024_215767
crossref_primary_10_1016_j_ceramint_2023_03_274
crossref_primary_10_3389_fchem_2022_881172
crossref_primary_10_1016_j_fochx_2024_101767
crossref_primary_10_1021_acssensors_3c00362
crossref_primary_10_1039_D1TC03683A
crossref_primary_10_1002_asia_202401423
crossref_primary_10_1039_D1TC05422H
crossref_primary_10_1016_j_microc_2021_107147
crossref_primary_10_1021_acsanm_2c04513
crossref_primary_10_1002_anie_202211850
crossref_primary_10_1016_j_vacuum_2023_112874
crossref_primary_10_1039_D3QM00678F
crossref_primary_10_1039_D1RA02971A
crossref_primary_10_1016_j_ccr_2020_213615
crossref_primary_10_1016_j_microc_2024_111053
crossref_primary_10_3390_cryst14040318
crossref_primary_10_1021_acs_cgd_2c01443
crossref_primary_10_1021_acs_inorgchem_1c02655
crossref_primary_10_1039_D3QI01723K
crossref_primary_10_1021_acs_inorgchem_5c00200
crossref_primary_10_1021_acssensors_3c02558
crossref_primary_10_1016_j_snr_2021_100064
crossref_primary_10_1016_j_xcrp_2023_101679
crossref_primary_10_1016_j_saa_2023_122916
crossref_primary_10_1016_j_snb_2021_130943
Cites_doi 10.1021/jz4015103
10.1039/C9CC02324K
10.1021/jacs.9b11024
10.1039/C8CE01875H
10.1021/acs.chemmater.5b03955
10.1039/C9CC00178F
10.1126/science.1230444
10.1021/ja403449k
10.1021/acs.chemmater.8b00611
10.1021/acs.chemrev.7b00095
10.1021/cr200174w
10.1039/C7QI00815E
10.1021/cm5045732
10.3390/s19040905
10.1016/j.ica.2018.08.050
10.1021/cm301194a
10.1021/ja411224j
10.1021/acsami.6b12118
10.1039/C9CC02285F
10.1039/C6TC05349A
10.1002/smll.201302983
10.1016/j.molstruc.2018.01.077
10.1021/jp3044016
10.1002/anie.200804853
10.1039/C8CC03496F
10.1021/acs.inorgchem.8b02738
10.1039/C9RA04152D
10.1039/C4MH00210E
10.1002/chem.201502033
10.1039/C9CS00906J
10.1039/C5RA08347H
10.1021/acs.inorgchem.6b01928
10.1039/C8CS00688A
10.1016/j.snb.2017.10.189
10.1016/j.ccr.2019.213065
10.1021/acs.chemrev.9b00223
10.1039/C7DT01352C
10.1038/nmat5050
10.1039/C7CS00879A
10.1002/chem.201501843
10.1039/C8QI00814K
10.1002/chem.201800847
10.1021/acsami.7b02630
10.1002/celc.201700931
10.1002/anie.201306304
10.1021/acs.inorgchem.8b00806
10.3390/s19040888
10.1039/C7TA10538J
10.1002/anie.201806732
10.1002/anie.201307217
10.1021/jacs.5b13458
10.1002/adma.201704679
10.1016/j.snb.2018.12.145
10.1039/C3CS60475F
10.1039/C8SC02774A
10.1016/j.aca.2018.09.003
10.1039/C3TA15058E
10.1002/ejic.201600261
10.1021/am402305u
10.1039/c3cc42268b
10.1021/acs.jpclett.0c00457
10.1021/acs.inorgchem.6b00500
10.1021/acs.analchem.8b01941
10.1021/ja106851d
10.1002/anie.201408453
10.1002/chem.201702127
10.1038/nmat4113
10.1002/anie.201912195
10.1016/j.talanta.2019.01.086
10.1038/ncomms3717
10.1039/C4CE02457E
10.1021/la402012d
10.1021/acs.accounts.7b00151
10.1016/j.inoche.2015.12.019
10.1002/advs.201801304
10.1016/j.snb.2016.06.152
10.1002/adfm.201303986
10.1002/anie.201909096
10.1021/acs.chemrev.8b00408
10.1021/ic101501p
10.1021/acs.inorgchem.6b01014
10.1039/C5QI00157A
10.1021/acs.accounts.9b00575
10.1021/acssensors.7b00304
10.1039/c3cc43461c
10.1021/cr300396p
10.1039/C7NJ04698G
10.1021/ja5006465
10.1039/C5TA01738F
10.1016/j.snb.2013.11.102
10.1039/C6TC04724F
10.1039/C6RA25681C
10.1002/anie.201203309
10.1021/acs.cgd.7b01318
10.1021/acscentsci.9b00482
10.1021/acs.chemrev.6b00346
10.1038/s41467-019-09682-0
10.1016/j.jssc.2014.06.018
10.1002/anie.201601782
10.1039/C7NR09536H
10.1021/jacs.8b02492
10.1039/C6CC00189K
10.1016/j.ccr.2018.09.004
10.1126/sciadv.aaq0066
10.1016/j.chempr.2019.04.013
10.1002/chem.201703510
10.1021/jacs.0c00368
10.1002/chem.201405060
10.1002/cplu.201600145
10.1021/ja407778a
10.1016/j.ccr.2017.09.017
10.1002/anie.201506219
10.1021/acsami.0c00803
10.1038/nchem.1457
10.1021/acs.inorgchem.9b00615
10.1021/jacs.7b07008
10.1002/anie.201608439
10.1021/acsami.6b04611
10.1002/anie.201503636
10.1021/jacs.9b04930
10.1039/C7CC00812K
10.1038/nchem.2718
10.3390/s150818153
10.1002/ejic.201601376
10.1016/j.enchem.2020.100029
10.1021/acsami.8b07770
10.1038/s41598-019-51590-2
10.1021/jacs.5b09600
10.1021/acs.cgd.8b00189
10.1002/anie.201914198
10.1039/C7CS00122C
10.1039/c3cc43747g
10.1021/acs.cgd.6b00428
10.1039/C6CE00032K
10.1039/c2jm35273g
10.1021/jacs.6b00248
10.1039/C7CS00885F
10.1039/C5CS00040H
10.1039/C4CS00129J
10.1021/acs.inorgchem.7b00252
10.1039/C7TC05707E
10.1039/C6CS00724D
10.1002/adma.201704303
10.1038/s41467-019-09157-2
10.1021/acs.cgd.9b01427
10.1021/acs.analchem.9b04291
10.1039/C4TA01916D
10.1002/adfm.201503154
10.1039/c3cc49555h
10.1039/C7AY00627F
10.1021/acsami.8b06103
10.1016/j.jssc.2017.02.028
10.1021/acs.analchem.9b00493
10.1039/C8CS00829A
10.1021/ja502643p
10.1016/j.jssc.2017.04.024
10.1021/ja109437d
10.1021/acssensors.5b00236
10.1021/acs.organomet.9b00735
10.1021/acs.inorgchem.7b02827
10.1016/j.sna.2019.06.050
10.1021/acs.analchem.8b00146
10.1016/j.snb.2017.09.041
10.1016/j.snb.2014.05.051
10.1038/s41467-019-11267-w
10.1021/ja312347p
10.1109/JSEN.2015.2438063
10.1039/C6RA19403F
10.1007/s40843-019-9457-5
10.1002/adma.201506457
10.1021/acs.chemmater.6b02528
10.1021/acssuschemeng.8b05368
10.1021/acs.chemrev.9b00666
10.1039/C7TC03312E
10.1021/jacs.7b08840
10.1038/srep04366
10.1016/j.chempr.2016.09.009
10.1002/slct.201600621
10.1039/C6NR02446G
10.1016/j.jssc.2018.10.044
10.1016/j.micromeso.2015.08.020
10.1039/C6DT01363E
10.1021/acs.analchem.5b03974
10.1039/C8CC00564H
10.1016/j.jssc.2017.06.015
10.1016/j.snb.2015.11.071
10.1002/anie.201709558
10.1039/C6RA23694D
10.1038/s41598-018-32810-7
10.1016/j.ccr.2017.06.007
10.1002/adma.200601838
10.1039/C7RA13494K
10.1039/C3CC47723A
10.1021/ac500759n
10.1039/D0TC00117A
10.1039/C4CC08945F
10.1039/C8CC07573E
10.1007/s40843-019-1169-9
10.1038/s41557-018-0171-z
10.1002/cplu.201900109
10.1002/chem.201501043
10.1039/C8TC02400F
10.1038/nchem.2875
10.1002/anie.201410612
10.1021/acsami.9b20763
10.1039/C9CS00880B
10.1016/j.jcis.2017.04.081
10.1021/acsami.8b22002
10.1002/cplu.201600057
10.1002/adfm.201401125
10.1021/jacs.8b11257
10.1039/C6CE00545D
10.1002/ejic.201600184
10.1016/j.chempr.2016.12.002
10.1016/j.snb.2016.11.017
10.1038/srep07053
10.1126/science.1246738
10.1021/jacs.9b00654
10.1002/anie.201808242
10.1039/C7DT00298J
10.1021/acsami.0c00143
10.1039/C8TA02036A
10.1039/C7AY01193H
10.1039/C8TC06630B
10.1039/C5CC09029F
10.1039/C8SC00021B
10.1016/j.snb.2017.12.187
10.1126/science.1067208
10.1039/C4CS00010B
10.3390/s17051108
10.1039/C8CS00256H
10.1021/la400508y
10.1039/C9TC01288E
10.1021/acs.inorgchem.5b00179
10.1039/C5CP01441G
10.1002/anie.201708973
10.1016/j.inoche.2018.07.002
10.1016/j.poly.2019.114314
10.1039/C4CC06729K
10.1002/anie.201906222
10.1021/acs.inorgchem.8b00502
10.1016/j.poly.2017.11.037
10.1039/C9CS00098D
10.1039/C5SC04461H
10.1016/j.chempr.2017.02.010
10.1039/C6NR01206J
10.1016/j.snb.2016.04.064
10.1002/cplu.201600137
10.1038/s41563-018-0189-z
10.1021/cr200101d
10.1016/j.jssc.2017.07.027
10.1039/C7AN01964E
10.1021/acs.analchem.6b03364
10.1002/slct.201803835
10.1016/j.ccr.2020.213222
10.1039/C6DT03812C
10.1016/j.ccr.2016.12.002
10.1021/acs.inorgchem.6b02243
10.1038/srep06247
10.1039/C5CP01988E
10.1002/anie.201207610
10.1039/C3TA15071B
10.1021/acssensors.6b00295
10.1021/acs.analchem.7b03723
10.1039/c2jm32802j
10.1016/j.snb.2016.11.085
10.1039/C5DT01791B
10.1016/j.inoche.2018.07.042
10.1021/ic500474j
10.1021/acssensors.9b00268
10.1021/acsami.7b16761
10.1002/adfm.201102157
10.1021/jacs.9b09103
10.1021/ja909629f
10.1002/anie.201805355
10.1039/C8CC03662D
10.1016/j.mee.2015.04.035
10.1039/c3cc44575e
10.1039/C4CC08136F
10.1016/j.snb.2018.05.113
10.1016/j.snb.2017.05.063
10.1016/j.snb.2017.02.005
10.1021/ja109103t
10.1021/acs.accounts.7b00387
10.1039/C8CC06875E
10.1038/nature19763
10.1039/C7DT02293J
10.1039/C6NJ02163H
10.1039/C7CS00653E
10.1039/C6DT02169G
10.1002/anie.201411854
10.1021/acs.chemmater.5b02476
10.1021/ja302110d
10.1039/C6TC05082D
10.1002/anie.201608780
10.1021/acs.cgd.6b01744
10.1039/C6TC02569B
10.1039/C7TC02430D
10.1021/acs.chemmater.6b00016
10.1039/C6CC05290H
10.1021/acs.inorgchem.5b02150
10.1002/adma.201805871
10.1002/chem.201801844
10.1021/acs.chemrev.8b00311
10.1021/am5070409
10.1039/C9SC03916C
10.1021/acsami.8b18891
10.1039/C9SC02274K
10.1016/j.apsusc.2015.07.166
10.1021/acs.chemmater.9b04440
10.1039/C8TC01454J
10.1002/anie.201307331
10.1002/cplu.201500564
10.1016/j.snb.2018.07.006
10.1039/C5NR06066D
10.1039/C7CS00861A
10.1002/anie.201907772
10.1016/j.ccr.2020.213262
10.1021/acs.inorgchem.8b02625
10.1021/acsami.5b03932
10.1021/acs.chemrev.8b00222
10.1021/cr200324t
10.1039/C7CS00283A
10.1021/ja508592f
10.1016/j.micromeso.2017.06.053
10.1039/C9ME00133F
10.1016/j.snb.2015.05.125
10.1016/j.ica.2017.06.067
10.1002/smll.201801563
10.1038/ncomms15985
10.1002/chem.201806146
10.1021/acs.chemrev.9b00350
10.1039/C4CS00039K
10.1039/C5CC00773A
10.1016/j.snb.2017.06.064
10.1021/ac503622n
10.1016/j.snb.2017.07.026
10.1039/C7CS00108H
10.1039/C2SC21181E
10.1016/j.jssc.2017.04.014
10.1039/C4CS00096J
10.1021/jacs.7b03633
10.1039/C6TC01297C
10.1039/C7CS00614D
10.1126/science.aaf6323
10.1002/advs.201500434
10.1021/acsami.8b07377
10.1016/j.ica.2019.119241
10.1039/C6CS00930A
10.1039/C8CC05459B
10.1039/C6TA10019H
10.1016/j.snb.2018.05.002
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
OTOTI
DOI 10.1039/c9cs00778d
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 641
ExternalDocumentID 1644724
10_1039_C9CS00778D
c9cs00778d
GroupedDBID -
0-7
02
0R
29B
4.4
53G
5GY
70
705
70J
7~J
85S
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABFLS
ABGFH
ABPTK
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
COF
CS3
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3I
JG
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
X
---
-DZ
-~X
0R~
2WC
6J9
70~
AAHBH
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
~02
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
-JG
1TJ
OTOTI
ID FETCH-LOGICAL-c436t-e93fca985fda791fcbd5e30343d22d31a9dd6c3e68d5c5ca58d3685d2662aac83
ISSN 0306-0012
1460-4744
IngestDate Fri May 19 00:45:47 EDT 2023
Fri Jul 11 15:44:57 EDT 2025
Fri Jul 11 08:16:56 EDT 2025
Sun Jun 29 14:15:43 EDT 2025
Thu Apr 24 23:01:00 EDT 2025
Tue Jul 01 04:18:44 EDT 2025
Sat Jan 08 03:51:46 EST 2022
Wed Nov 11 00:25:29 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c436t-e93fca985fda791fcbd5e30343d22d31a9dd6c3e68d5c5ca58d3685d2662aac83
Notes Shuang-Quan Zang received his PhD degree in Chemistry from Nanjing University in 2006 under the supervision of Prof. Qingjin Meng. After postdoctoral research with Prof. T. C. W. Mak in The Chinese University of Hong Kong, he joined in the chemistry faculty of Zhengzhou University. His current scientific interests include atomically precise metal clusters and cluster-assembled materials, functional metal-organic frameworks, luminescence-structure relationship and applications.
Shu-Na Zhao obtained her BS degree in Chemistry from Lanzhou University in 2011. She received her PhD degree (2016) in Inorganic Chemistry from Changchun Institute of Applied Chemistry, University of the Chinese Academy of Sciences (UCAS) under the supervision of Prof. Hongjie Zhang, where she studied lanthanide metal-organic frameworks for luminescence sensing. She worked as a postdoctoral fellow in the COMOC group, Department of Chemistry at Ghent University in 2016-2019. Currently, she works at the Laboratory of Functional Crystalline Molecular Materials, Zhengzhou University. Her research interests include synthesis and applications of MOFs in heterogeneous catalysis and chemical sensing.
Jing Li is a Distinguished Professor in the Department of Chemistry and Chemical Biology at Rutgers University, USA. She received her PhD degree from Cornell University in 1990 under the guidance of Professor Roald Hoffmann. She joined the chemistry faculty at Rutgers University in 1991 as an Assistant Professor. She was promoted to Associate Professor in 1996, to Full Professor in 1999, and to Distinguished Professor in 2006. She has published 350+ research articles, invited book chapters and reviews, and holds 15 issued and pending patents. Her research focuses on the development of functional materials for renewable, sustainable and clean energy related applications.
Hai-Yang Li obtained his BS degree in chemistry in 2011 and received his PhD degree in inorganic chemistry in 2017 from Zhengzhou University under the supervision of Prof. Thomas C. W. Mak and Prof. Shuang-Quan Zang in 2017. After that, he joined the College of Chemistry of Zhengzhou University in 2017. His research focuses on the design and synthesis of functional metal-organic frameworks.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
ORCID 0000-0001-7792-4322
0000-0002-6728-0559
0000000267280559
0000000177924322
OpenAccessLink https://www.osti.gov/biblio/1644724
PQID 2438963059
PQPubID 2047503
PageCount 38
ParticipantIDs crossref_primary_10_1039_C9CS00778D
rsc_primary_c9cs00778d
proquest_miscellaneous_2430377229
proquest_miscellaneous_2511196732
proquest_journals_2438963059
crossref_citationtrail_10_1039_C9CS00778D
osti_scitechconnect_1644724
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-07
PublicationDateYYYYMMDD 2020-09-07
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-07
  day: 07
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United Kingdom
PublicationTitle Chemical Society reviews
PublicationYear 2020
Publisher Royal Society of Chemistry
Royal Society of Chemistry (RSC)
Publisher_xml – name: Royal Society of Chemistry
– name: Royal Society of Chemistry (RSC)
References Sachdeva (C9CS00778D-(cit330)/*[position()=1]) 2016; 1
Dunning (C9CS00778D-(cit153)/*[position()=1]) 2017; 2
Cao (C9CS00778D-(cit195)/*[position()=1]) 2017; 243
Zhang (C9CS00778D-(cit288)/*[position()=1]) 2018; 10
Stassen (C9CS00778D-(cit239)/*[position()=1]) 2019; 5
Xu (C9CS00778D-(cit309)/*[position()=1]) 2015; 7
Kreno (C9CS00778D-(cit49)/*[position()=1]) 2012; 112
Wang (C9CS00778D-(cit295)/*[position()=1]) 2015; 5
Zhao (C9CS00778D-(cit311)/*[position()=1]) 2020; 177
Dong (C9CS00778D-(cit261)/*[position()=1]) 2014; 53
Davydovskaya (C9CS00778D-(cit284)/*[position()=1]) 2014; 193
Zhang (C9CS00778D-(cit43)/*[position()=1]) 2018; 4
Zhao (C9CS00778D-(cit89)/*[position()=1]) 2016; 52
Yi (C9CS00778D-(cit349)/*[position()=1]) 2018; 54
Lustig (C9CS00778D-(cit40)/*[position()=1]) 2018; 373
Wang (C9CS00778D-(cit291)/*[position()=1]) 2016; 40
Chen (C9CS00778D-(cit110)/*[position()=1]) 2013; 52
Zhou (C9CS00778D-(cit165)/*[position()=1]) 2019; 91
Hao (C9CS00778D-(cit335)/*[position()=1]) 2016; 8
Cui (C9CS00778D-(cit41)/*[position()=1]) 2018; 47
Woellner (C9CS00778D-(cit3)/*[position()=1]) 2018; 30
Wang (C9CS00778D-(cit162)/*[position()=1]) 2016; 45
Liu (C9CS00778D-(cit315)/*[position()=1]) 2017; 56
Chorazy (C9CS00778D-(cit107)/*[position()=1]) 2019; 7
Zhang (C9CS00778D-(cit80)/*[position()=1]) 2018; 354
Wang (C9CS00778D-(cit339)/*[position()=1]) 2017; 251
Zheng (C9CS00778D-(cit329)/*[position()=1]) 2016; 81
Yang (C9CS00778D-(cit300)/*[position()=1]) 2019; 21
Yamagiwa (C9CS00778D-(cit282)/*[position()=1]) 2014; 4
Xu (C9CS00778D-(cit274)/*[position()=1]) 2016; 88
Gustafson (C9CS00778D-(cit280)/*[position()=1]) 2019; 4
Tian (C9CS00778D-(cit336)/*[position()=1]) 2015; 1
Ye (C9CS00778D-(cit85)/*[position()=1]) 2015; 27
Liu (C9CS00778D-(cit137)/*[position()=1]) 2016; 55
Andrés (C9CS00778D-(cit331)/*[position()=1]) 2020; 12
Lin (C9CS00778D-(cit131)/*[position()=1]) 2013; 52
Wang (C9CS00778D-(cit267)/*[position()=1]) 2016; 52
Yu (C9CS00778D-(cit344)/*[position()=1]) 2015; 54
Huang (C9CS00778D-(cit90)/*[position()=1]) 2017; 9
Bobbitt (C9CS00778D-(cit55)/*[position()=1]) 2017; 46
Ma (C9CS00778D-(cit180)/*[position()=1]) 2014; 86
Wu (C9CS00778D-(cit252)/*[position()=1]) 2015; 223
Chen (C9CS00778D-(cit317)/*[position()=1]) 2016; 55
Dong (C9CS00778D-(cit250)/*[position()=1]) 2018; 1160
Liu (C9CS00778D-(cit66)/*[position()=1]) 2018; 5
Cui (C9CS00778D-(cit114)/*[position()=1]) 2014; 53
Zhou (C9CS00778D-(cit79)/*[position()=1]) 2010; 49
Wriedt (C9CS00778D-(cit74)/*[position()=1]) 2013; 135
Bhattacharya (C9CS00778D-(cit76)/*[position()=1]) 2016; 81
Guo (C9CS00778D-(cit212)/*[position()=1]) 2018; 57
Xue (C9CS00778D-(cit341)/*[position()=1]) 2017; 251
Wang (C9CS00778D-(cit218)/*[position()=1]) 2018; 90
Reed (C9CS00778D-(cit235)/*[position()=1]) 2016; 138
Liu (C9CS00778D-(cit68)/*[position()=1]) 2020; 410
Ye (C9CS00778D-(cit233)/*[position()=1]) 2019; 200
Zhang (C9CS00778D-(cit123)/*[position()=1]) 2019; 7
Xin (C9CS00778D-(cit193)/*[position()=1]) 2017; 9
Chen (C9CS00778D-(cit100)/*[position()=1]) 2014; 53
Dong (C9CS00778D-(cit75)/*[position()=1]) 2013; 135
Nagarkar (C9CS00778D-(cit196)/*[position()=1]) 2015; 21
Li (C9CS00778D-(cit67)/*[position()=1]) 2020; 2
Liu (C9CS00778D-(cit343)/*[position()=1]) 2020; 142
Wu (C9CS00778D-(cit81)/*[position()=1]) 2020; 32
Zeleňák (C9CS00778D-(cit351)/*[position()=1]) 2019; 9
Shao (C9CS00778D-(cit104)/*[position()=1]) 2018; 9
Wu (C9CS00778D-(cit231)/*[position()=1]) 2012; 22
Yu (C9CS00778D-(cit113)/*[position()=1]) 2014; 50
Zhang (C9CS00778D-(cit208)/*[position()=1]) 2017; 253
Ding (C9CS00778D-(cit32)/*[position()=1]) 2019; 48
Gamonal (C9CS00778D-(cit229)/*[position()=1]) 2020; 11
Lu (C9CS00778D-(cit342)/*[position()=1]) 2011; 133
Liu (C9CS00778D-(cit136)/*[position()=1]) 2014; 24
Stavila (C9CS00778D-(cit39)/*[position()=1]) 2014; 43
Campbell (C9CS00778D-(cit95)/*[position()=1]) 2015; 54
Zhang (C9CS00778D-(cit87)/*[position()=1]) 2016; 45
Rodenas (C9CS00778D-(cit31)/*[position()=1]) 2015; 14
Campbell (C9CS00778D-(cit64)/*[position()=1]) 2017; 17
Zhang (C9CS00778D-(cit167)/*[position()=1]) 2019; 295
Yang (C9CS00778D-(cit22)/*[position()=1]) 2019; 10
Li (C9CS00778D-(cit38)/*[position()=1]) 2020; 412
Durini (C9CS00778D-(cit326)/*[position()=1]) 2019; 84
Rui (C9CS00778D-(cit223)/*[position()=1]) 2018; 10
Cui (C9CS00778D-(cit42)/*[position()=1]) 2012; 112
Drache (C9CS00778D-(cit160)/*[position()=1]) 2016
Song (C9CS00778D-(cit296)/*[position()=1]) 2016; 6
Ye (C9CS00778D-(cit142)/*[position()=1]) 2017; 56
Zhao (C9CS00778D-(cit297)/*[position()=1]) 2017; 7
Xu (C9CS00778D-(cit337)/*[position()=1]) 2017; 5
Nandi (C9CS00778D-(cit192)/*[position()=1]) 2018; 143
Li (C9CS00778D-(cit350)/*[position()=1]) 2013; 29
Li (C9CS00778D-(cit15)/*[position()=1]) 2020; 49
Zhang (C9CS00778D-(cit219)/*[position()=1]) 2018; 260
Peng (C9CS00778D-(cit279)/*[position()=1]) 2018; 57
Zhang (C9CS00778D-(cit78)/*[position()=1]) 2018; 10
Vellingiri (C9CS00778D-(cit338)/*[position()=1]) 2017; 241
Zhang (C9CS00778D-(cit188)/*[position()=1]) 2015; 355
Toscani (C9CS00778D-(cit236)/*[position()=1]) 2015; 21
Yang (C9CS00778D-(cit197)/*[position()=1]) 2017; 466
Ren (C9CS00778D-(cit313)/*[position()=1]) 2019; 284
Dhakshinamoorthy (C9CS00778D-(cit36)/*[position()=1]) 2018; 47
Wan (C9CS00778D-(cit199)/*[position()=1]) 2015; 220
Zeinali (C9CS00778D-(cit283)/*[position()=1]) 2019; 278
Yao (C9CS00778D-(cit285)/*[position()=1]) 2016; 28
Zhang (C9CS00778D-(cit119)/*[position()=1]) 2017; 5
Khan (C9CS00778D-(cit65)/*[position()=1]) 2019; 19
Dou (C9CS00778D-(cit122)/*[position()=1]) 2014; 136
Zhang (C9CS00778D-(cit181)/*[position()=1]) 2016; 8
Rubio-Giménez (C9CS00778D-(cit98)/*[position()=1]) 2018; 57
Wang (C9CS00778D-(cit145)/*[position()=1]) 2012; 51
Hu (C9CS00778D-(cit52)/*[position()=1]) 2014; 43
Clements (C9CS00778D-(cit105)/*[position()=1]) 2018; 57
Campbell (C9CS00778D-(cit99)/*[position()=1]) 2015; 137
Li (C9CS00778D-(cit157)/*[position()=1]) 2019; 55
Huang (C9CS00778D-(cit316)/*[position()=1]) 2016; 55
Guo (C9CS00778D-(cit268)/*[position()=1]) 2015; 51
Zhang (C9CS00778D-(cit126)/*[position()=1]) 2018; 140
Yi (C9CS00778D-(cit264)/*[position()=1]) 2015; 2
Zhang (C9CS00778D-(cit70)/*[position()=1]) 2014; 43
Xu (C9CS00778D-(cit138)/*[position()=1]) 2018; 90
Li (C9CS00778D-(cit146)/*[position()=1]) 2020; 20
Zhou (C9CS00778D-(cit266)/*[position()=1]) 2016; 52
Yuan (C9CS00778D-(cit301)/*[position()=1]) 2017; 251
Nandi (C9CS00778D-(cit194)/*[position()=1]) 2017; 46
Li (C9CS00778D-(cit16)/*[position()=1]) 2018; 377
He (C9CS00778D-(cit83)/*[position()=1]) 2019; 62
Song (C9CS00778D-(cit185)/*[position()=1]) 2017; 9
Chen (C9CS00778D-(cit269)/*[position()=1]) 2017; 5
Park (C9CS00778D-(cit125)/*[position()=1]) 2013; 4
Sun (C9CS00778D-(cit213)/*[position()=1]) 2018; 24
Pentyala (C9CS00778D-(cit245)/*[position()=1]) 2016; 225
Lin (C9CS00778D-(cit134)/*[position()=1]) 2015; 2
Chernikova (C9CS00778D-(cit221)/*[position()=1]) 2018; 6
Yuvaraja (C9CS00778D-(cit228)/*[position()=1]) 2020; 12
Li (C9CS00778D-(cit77)/*[position()=1]) 2019; 141
Wang (C9CS00778D-(cit46)/*[position()=1]) 2017; 2
Bai (C9CS00778D-(cit314)/*[position()=1]) 2016; 17
Zhang (C9CS00778D-(cit28)/*[position()=1]) 2012; 112
Ling (C9CS00778D-(cit182)/*[position()=1]) 2019; 55
Polunin (C9CS00778D-(cit319)/*[position()=1]) 2015; 54
Hu (C9CS00778D-(cit346)/*[position()=1]) 2014; 2
Weiss (C9CS00778D-(cit169)/*[position()=1]) 2016; 220
Liu (C9CS00778D-(cit211)/*[position()=1]) 2019; 11
Zhang (C9CS00778D-(cit260)/*[position()=1]) 2014; 136
Dolgopolova (C9CS00778D-(cit60)/*[position()=1]) 2018; 47
Ge (C9CS00778D-(cit109)/*[position()=1]) 2017; 56
Zhang (C9CS00778D-(cit71)/*[position()=1]) 2015; 54
Schoedel (C9CS00778D-(cit8)/*[position()=1]) 2016; 116
Zhao (C9CS00778D-(cit10)/*[position()=1]) 2016; 539
Pathak (C9CS00778D-(cit27)/*[position()=1]) 2019; 10
Sun (C9CS00778D-(cit307)/*[position()=1]) 2018; 141
Tissot (C9CS00778D-(cit103)/*[position()=1]) 2018; 55
Lin (C9CS00778D-(cit57)/*[position()=1]) 2016; 3
Stassen (C9CS00778D-(cit56)/*[position()=1]) 2017; 46
He (C9CS00778D-(cit1)/*[position()=1]) 2019; 119
Dalapati (C9CS00778D-(cit177)/*[position()=1]) 2017; 245
Beltrán (C9CS00778D-(cit234)/*[position()=1]) 2014; 50
Liu (C9CS00778D-(cit265)/*[position()=1]) 2015; 51
Yang (C9CS00778D-(cit222)/*[position()=1]) 2012; 4
Li (C9CS00778D-(cit348)/*[position()=1]) 2013; 52
Shustova (C9CS00778D-(cit204)/*[position()=1]) 2013; 135
Douvali (C9CS00778D-(cit158)/*[position()=1]) 2015; 54
Weiss (C9CS00778D-(cit171)/*[position()=1]) 2015; 17
Yuan (C9CS00778D-(cit47)/*[position()=1]) 2018; 30
Chidambaram (C9CS00778D-(cit69)/*[position()=1]) 2018; 5
Zhao (C9CS00778D-(cit320)/*[position()=1]) 2016; 4
Chen (C9CS00778D-(cit130)/*[position()=1]) 2015; 17
Yi (C9CS00778D-(cit294)/*[position()=1]) 2012; 22
Haghighi (C9CS00778D-(cit276)/*[position()=1]) 2019; 9
Lustig (C9CS00778D-(cit53)/*[position()=1]) 2017; 46
Sapsanis (C9CS00778D-(cit173)/*[position()=1]) 2015; 15
Eddaoudi (C9CS00778D-(cit7)/*[position()=1]) 2002; 295
Aubrey (C9CS00778D-(cit278)/*[position()=1]) 2019; 141
Qi (C9CS00778D-(cit132)/*[position()=1]) 2013; 49
Meng (C9CS00778D-(cit230)/*[position()=1]) 2019; 141
Sun (C9CS00778D-(cit62)/*[position()=1]) 2016; 55
Li (C9CS00778D-(cit190)/*[position()=1]) 2014; 4
Zhao (C9CS00778D-(cit262)/*[position()=1]) 2018; 9
Arıcı (C9CS00778D-(cit303)/*[position()=1]) 2017; 249
Mon (C9CS00778D-(cit29)/*[position()=1]) 2017; 139
Talin (C9CS00778D-(cit25)/*[position()=1]) 2014; 343
Xu (C9CS00778D-(cit144)/*[position()=1]) 2016; 4
Ullman (C9CS00778D-(cit112)/*[position()=1]) 2018; 10
Sundaram (C9CS00778D-(cit240)/*[position()=1]) 2018; 24
Ni (C9CS00778D-(cit73)/*[position()=1]) 2017; 335
Wan (C9CS00778D-(cit327)/*[position()=1]) 2014; 201
Schulz (C9CS00778D-(cit225)/*[position()=1]) 2018; 57
Wu (C9CS00778D-(cit106)/*[position()=1]) 2017; 139
Nakatsuka (C9CS00778D-(cit152)/*[position()=1]) 2020; 59
Yang (C9CS00778D-(cit86)/*[position()=1]) 2016; 28
Ma (C9CS00778D-(cit148)/*[position()=1]) 2018; 5
Zheng (C9CS00778D-(cit186)/*[position()=1]) 2017; 5
Travlou (C9CS00778D-(cit201)/*[position()=1]) 2015; 3
Desai (C9CS00778D-(cit232)/*[position()=1]) 2015; 51
Hwang (C9CS00778D-(cit238)/*[position()=1]) 2020; 12
Xie (C9CS00778D-(cit127)/
References_xml – volume: 4
  start-page: 2530
  year: 2013
  ident: C9CS00778D-(cit125)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz4015103
– volume: 55
  start-page: 6926
  year: 2019
  ident: C9CS00778D-(cit157)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC02324K
– volume: 141
  start-page: 18964
  year: 2019
  ident: C9CS00778D-(cit129)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11024
– volume: 21
  start-page: 321
  year: 2019
  ident: C9CS00778D-(cit300)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C8CE01875H
– volume: 27
  start-page: 8255
  year: 2015
  ident: C9CS00778D-(cit85)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b03955
– volume: 55
  start-page: 4727
  year: 2019
  ident: C9CS00778D-(cit310)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00178F
– volume: 341
  start-page: 1230444
  year: 2013
  ident: C9CS00778D-(cit30)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1230444
– volume: 135
  start-page: 10214
  year: 2013
  ident: C9CS00778D-(cit75)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403449k
– volume: 30
  start-page: 2160
  year: 2018
  ident: C9CS00778D-(cit91)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b00611
– volume: 117
  start-page: 9755
  year: 2017
  ident: C9CS00778D-(cit176)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00095
– volume: 112
  start-page: 1163
  year: 2012
  ident: C9CS00778D-(cit28)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200174w
– volume: 5
  start-page: 979
  year: 2018
  ident: C9CS00778D-(cit69)/*[position()=1]
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C7QI00815E
– volume: 27
  start-page: 2460
  year: 2015
  ident: C9CS00778D-(cit321)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm5045732
– volume: 19
  start-page: 905
  year: 2019
  ident: C9CS00778D-(cit65)/*[position()=1]
  publication-title: Sensors
  doi: 10.3390/s19040905
– volume: 483
  start-page: 473
  year: 2018
  ident: C9CS00778D-(cit302)/*[position()=1]
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/j.ica.2018.08.050
– volume: 24
  start-page: 3511
  year: 2012
  ident: C9CS00778D-(cit178)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm301194a
– volume: 136
  start-page: 5527
  year: 2014
  ident: C9CS00778D-(cit122)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja411224j
– volume: 8
  start-page: 32259
  year: 2016
  ident: C9CS00778D-(cit181)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12118
– volume: 55
  start-page: 6385
  year: 2019
  ident: C9CS00778D-(cit182)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC02285F
– volume: 5
  start-page: 2311
  year: 2017
  ident: C9CS00778D-(cit269)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC05349A
– volume: 10
  start-page: 3672
  year: 2014
  ident: C9CS00778D-(cit323)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201302983
– volume: 1160
  start-page: 46
  year: 2018
  ident: C9CS00778D-(cit250)/*[position()=1]
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2018.01.077
– volume: 116
  start-page: 16593
  year: 2012
  ident: C9CS00778D-(cit237)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp3044016
– volume: 48
  start-page: 2334
  year: 2009
  ident: C9CS00778D-(cit259)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200804853
– volume: 54
  start-page: 8088
  year: 2018
  ident: C9CS00778D-(cit255)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC03496F
– volume: 58
  start-page: 524
  year: 2019
  ident: C9CS00778D-(cit248)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b02738
– volume: 9
  start-page: 24460
  year: 2019
  ident: C9CS00778D-(cit276)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C9RA04152D
– volume: 2
  start-page: 245
  year: 2015
  ident: C9CS00778D-(cit264)/*[position()=1]
  publication-title: Mater. Horiz.
  doi: 10.1039/C4MH00210E
– volume: 21
  start-page: 15854
  year: 2015
  ident: C9CS00778D-(cit325)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201502033
– volume: 49
  start-page: 1414
  year: 2020
  ident: C9CS00778D-(cit24)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00906J
– volume: 5
  start-page: 48881
  year: 2015
  ident: C9CS00778D-(cit295)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA08347H
– volume: 55
  start-page: 11831
  year: 2016
  ident: C9CS00778D-(cit324)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b01928
– volume: 47
  start-page: 8611
  year: 2018
  ident: C9CS00778D-(cit14)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00688A
– volume: 257
  start-page: 609
  year: 2018
  ident: C9CS00778D-(cit168)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2017.10.189
– volume: 401
  start-page: 213065
  year: 2019
  ident: C9CS00778D-(cit4)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.213065
– volume: 120
  start-page: 1438
  year: 2020
  ident: C9CS00778D-(cit35)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00223
– volume: 46
  start-page: 7098
  year: 2017
  ident: C9CS00778D-(cit163)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT01352C
– volume: 17
  start-page: 174
  year: 2018
  ident: C9CS00778D-(cit9)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5050
– volume: 47
  start-page: 5740
  year: 2018
  ident: C9CS00778D-(cit41)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00879A
– volume: 21
  start-page: 14529
  year: 2015
  ident: C9CS00778D-(cit236)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201501843
– volume: 5
  start-page: 2875
  year: 2018
  ident: C9CS00778D-(cit148)/*[position()=1]
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C8QI00814K
– volume: 24
  start-page: 9220
  year: 2018
  ident: C9CS00778D-(cit240)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201800847
– volume: 9
  start-page: 24926
  year: 2017
  ident: C9CS00778D-(cit333)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b02630
– volume: 5
  start-page: 6
  year: 2018
  ident: C9CS00778D-(cit66)/*[position()=1]
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201700931
– volume: 52
  start-page: 11550
  year: 2013
  ident: C9CS00778D-(cit110)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201306304
– volume: 57
  start-page: 7104
  year: 2018
  ident: C9CS00778D-(cit212)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b00806
– volume: 19
  start-page: 888
  year: 2019
  ident: C9CS00778D-(cit332)/*[position()=1]
  publication-title: Sensors
  doi: 10.3390/s19040888
– volume: 6
  start-page: 5550
  year: 2018
  ident: C9CS00778D-(cit221)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10538J
– volume: 57
  start-page: 10971
  year: 2018
  ident: C9CS00778D-(cit279)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201806732
– volume: 52
  start-page: 13429
  year: 2013
  ident: C9CS00778D-(cit131)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201307217
– volume: 138
  start-page: 2158
  year: 2016
  ident: C9CS00778D-(cit128)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b13458
– volume: 30
  start-page: 1704679
  year: 2018
  ident: C9CS00778D-(cit3)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704679
– volume: 284
  start-page: 421
  year: 2019
  ident: C9CS00778D-(cit313)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2018.12.145
– volume: 43
  start-page: 5419
  year: 2014
  ident: C9CS00778D-(cit2)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60475F
– volume: 9
  start-page: 7986
  year: 2018
  ident: C9CS00778D-(cit104)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC02774A
– volume: 1043
  start-page: 89
  year: 2018
  ident: C9CS00778D-(cit203)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2018.09.003
– volume: 2
  start-page: 5724
  year: 2014
  ident: C9CS00778D-(cit116)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA15058E
– start-page: 4483
  year: 2016
  ident: C9CS00778D-(cit160)/*[position()=1]
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201600261
– volume: 5
  start-page: 10565
  year: 2013
  ident: C9CS00778D-(cit226)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am402305u
– volume: 49
  start-page: 7711
  year: 2013
  ident: C9CS00778D-(cit120)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc42268b
– volume: 11
  start-page: 3362
  year: 2020
  ident: C9CS00778D-(cit229)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c00457
– volume: 55
  start-page: 5476
  year: 2016
  ident: C9CS00778D-(cit316)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b00500
– volume: 90
  start-page: 9330
  year: 2018
  ident: C9CS00778D-(cit138)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b01941
– volume: 133
  start-page: 4153
  year: 2011
  ident: C9CS00778D-(cit272)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja106851d
– volume: 53
  start-page: 14438
  year: 2014
  ident: C9CS00778D-(cit114)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201408453
– volume: 23
  start-page: 12559
  year: 2017
  ident: C9CS00778D-(cit347)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201702127
– volume: 14
  start-page: 48
  year: 2015
  ident: C9CS00778D-(cit31)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4113
– volume: 59
  start-page: 1435
  year: 2020
  ident: C9CS00778D-(cit152)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201912195
– volume: 200
  start-page: 472
  year: 2019
  ident: C9CS00778D-(cit233)/*[position()=1]
  publication-title: Talanta
  doi: 10.1016/j.talanta.2019.01.086
– volume: 4
  start-page: 2717
  year: 2013
  ident: C9CS00778D-(cit18)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3717
– volume: 17
  start-page: 2129
  year: 2015
  ident: C9CS00778D-(cit130)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C4CE02457E
– volume: 29
  start-page: 8657
  year: 2013
  ident: C9CS00778D-(cit350)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la402012d
– volume: 50
  start-page: 2457
  year: 2017
  ident: C9CS00778D-(cit59)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00151
– volume: 66
  start-page: 87
  year: 2016
  ident: C9CS00778D-(cit306)/*[position()=1]
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2015.12.019
– volume: 6
  start-page: 1801304
  year: 2019
  ident: C9CS00778D-(cit92)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801304
– volume: 237
  start-page: 776
  year: 2016
  ident: C9CS00778D-(cit334)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2016.06.152
– volume: 24
  start-page: 4034
  year: 2014
  ident: C9CS00778D-(cit287)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303986
– volume: 59
  start-page: 172
  year: 2020
  ident: C9CS00778D-(cit96)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201909096
– volume: 119
  start-page: 4471
  year: 2019
  ident: C9CS00778D-(cit1)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00408
– volume: 49
  start-page: 10191
  year: 2010
  ident: C9CS00778D-(cit79)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic101501p
– volume: 55
  start-page: 7980
  year: 2016
  ident: C9CS00778D-(cit317)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b01014
– volume: 2
  start-page: 1085
  year: 2015
  ident: C9CS00778D-(cit134)/*[position()=1]
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C5QI00157A
– volume: 53
  start-page: 485
  year: 2020
  ident: C9CS00778D-(cit19)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00575
– volume: 2
  start-page: 1294
  year: 2017
  ident: C9CS00778D-(cit210)/*[position()=1]
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.7b00304
– volume: 49
  start-page: 6864
  year: 2013
  ident: C9CS00778D-(cit132)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc43461c
– volume: 113
  start-page: 3686
  year: 2013
  ident: C9CS00778D-(cit5)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr300396p
– volume: 42
  start-page: 3885
  year: 2018
  ident: C9CS00778D-(cit298)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C7NJ04698G
– volume: 136
  start-page: 8277
  year: 2014
  ident: C9CS00778D-(cit244)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5006465
– volume: 3
  start-page: 11417
  year: 2015
  ident: C9CS00778D-(cit201)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA01738F
– volume: 193
  start-page: 911
  year: 2014
  ident: C9CS00778D-(cit284)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2013.11.102
– volume: 5
  start-page: 2084
  year: 2017
  ident: C9CS00778D-(cit119)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC04724F
– volume: 7
  start-page: 2258
  year: 2017
  ident: C9CS00778D-(cit297)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA25681C
– volume: 51
  start-page: 9321
  year: 2012
  ident: C9CS00778D-(cit145)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201203309
– volume: 17
  start-page: 6719
  year: 2017
  ident: C9CS00778D-(cit166)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.7b01318
– volume: 5
  start-page: 1425
  year: 2019
  ident: C9CS00778D-(cit239)/*[position()=1]
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.9b00482
– volume: 116
  start-page: 12466
  year: 2016
  ident: C9CS00778D-(cit8)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00346
– volume: 10
  start-page: 1721
  year: 2019
  ident: C9CS00778D-(cit27)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09682-0
– volume: 223
  start-page: 59
  year: 2015
  ident: C9CS00778D-(cit252)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2014.06.018
– volume: 55
  start-page: 6235
  year: 2016
  ident: C9CS00778D-(cit224)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201601782
– volume: 10
  start-page: 8075
  year: 2018
  ident: C9CS00778D-(cit243)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR09536H
– volume: 140
  start-page: 7827
  year: 2018
  ident: C9CS00778D-(cit126)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02492
– volume: 52
  start-page: 5238
  year: 2016
  ident: C9CS00778D-(cit89)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC00189K
– volume: 377
  start-page: 307
  year: 2018
  ident: C9CS00778D-(cit16)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2018.09.004
– volume: 4
  start-page: eaaq0066
  year: 2018
  ident: C9CS00778D-(cit43)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaq0066
– volume: 5
  start-page: 1938
  year: 2019
  ident: C9CS00778D-(cit50)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.04.013
– volume: 23
  start-page: 13602
  year: 2017
  ident: C9CS00778D-(cit115)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201703510
– volume: 142
  start-page: 6690
  year: 2020
  ident: C9CS00778D-(cit343)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00368
– volume: 21
  start-page: 1645
  year: 2015
  ident: C9CS00778D-(cit318)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201405060
– volume: 81
  start-page: 817
  year: 2016
  ident: C9CS00778D-(cit133)/*[position()=1]
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201600145
– volume: 135
  start-page: 13326
  year: 2013
  ident: C9CS00778D-(cit204)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407778a
– volume: 373
  start-page: 116
  year: 2018
  ident: C9CS00778D-(cit40)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.09.017
– volume: 55
  start-page: 3566
  year: 2016
  ident: C9CS00778D-(cit62)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201506219
– volume: 12
  start-page: 18748
  year: 2020
  ident: C9CS00778D-(cit228)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c00803
– volume: 4
  start-page: 887
  year: 2012
  ident: C9CS00778D-(cit222)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1457
– volume: 58
  start-page: 10686
  year: 2019
  ident: C9CS00778D-(cit352)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b00615
– volume: 139
  start-page: 11714
  year: 2017
  ident: C9CS00778D-(cit106)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07008
– volume: 55
  start-page: 16021
  year: 2016
  ident: C9CS00778D-(cit137)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201608439
– volume: 8
  start-page: 18043
  year: 2016
  ident: C9CS00778D-(cit254)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b04611
– volume: 54
  start-page: 9861
  year: 2015
  ident: C9CS00778D-(cit71)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201503636
– volume: 141
  start-page: 12663
  year: 2019
  ident: C9CS00778D-(cit77)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04930
– volume: 53
  start-page: 6077
  year: 2017
  ident: C9CS00778D-(cit175)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC00812K
– volume: 9
  start-page: 689
  year: 2017
  ident: C9CS00778D-(cit90)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2718
– volume: 15
  start-page: 18153
  year: 2015
  ident: C9CS00778D-(cit173)/*[position()=1]
  publication-title: Sensors
  doi: 10.3390/s150818153
– start-page: 1396
  year: 2017
  ident: C9CS00778D-(cit147)/*[position()=1]
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201601376
– volume: 2
  start-page: 100029
  year: 2020
  ident: C9CS00778D-(cit67)/*[position()=1]
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2020.100029
– volume: 10
  start-page: 27465
  year: 2018
  ident: C9CS00778D-(cit78)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b07770
– volume: 9
  start-page: 15572
  year: 2019
  ident: C9CS00778D-(cit351)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-51590-2
– volume: 137
  start-page: 13780
  year: 2015
  ident: C9CS00778D-(cit99)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b09600
– volume: 18
  start-page: 3883
  year: 2018
  ident: C9CS00778D-(cit121)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.8b00189
– volume: 59
  start-page: 4491
  year: 2020
  ident: C9CS00778D-(cit172)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201914198
– volume: 46
  start-page: 3185
  year: 2017
  ident: C9CS00778D-(cit56)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00122C
– volume: 49
  start-page: 8244
  year: 2013
  ident: C9CS00778D-(cit149)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc43747g
– volume: 16
  start-page: 3067
  year: 2016
  ident: C9CS00778D-(cit271)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.6b00428
– volume: 18
  start-page: 4374
  year: 2016
  ident: C9CS00778D-(cit187)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C6CE00032K
– volume: 22
  start-page: 23201
  year: 2012
  ident: C9CS00778D-(cit294)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm35273g
– volume: 138
  start-page: 5594
  year: 2016
  ident: C9CS00778D-(cit235)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00248
– volume: 47
  start-page: 4729
  year: 2018
  ident: C9CS00778D-(cit6)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00885F
– volume: 44
  start-page: 4290
  year: 2015
  ident: C9CS00778D-(cit51)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00040H
– volume: 43
  start-page: 5789
  year: 2014
  ident: C9CS00778D-(cit70)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00129J
– volume: 56
  start-page: 4238
  year: 2017
  ident: C9CS00778D-(cit142)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b00252
– volume: 6
  start-page: 2010
  year: 2018
  ident: C9CS00778D-(cit345)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC05707E
– volume: 46
  start-page: 4774
  year: 2017
  ident: C9CS00778D-(cit37)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00724D
– volume: 30
  start-page: 1704303
  year: 2018
  ident: C9CS00778D-(cit47)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704303
– volume: 10
  start-page: 1328
  year: 2019
  ident: C9CS00778D-(cit220)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09157-2
– volume: 20
  start-page: 1103
  year: 2020
  ident: C9CS00778D-(cit146)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.9b01427
– volume: 91
  start-page: 15853
  year: 2019
  ident: C9CS00778D-(cit207)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b04291
– volume: 2
  start-page: 14222
  year: 2014
  ident: C9CS00778D-(cit346)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01916D
– volume: 25
  start-page: 6448
  year: 2015
  ident: C9CS00778D-(cit111)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201503154
– volume: 50
  start-page: 3579
  year: 2014
  ident: C9CS00778D-(cit234)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc49555h
– volume: 9
  start-page: 3094
  year: 2017
  ident: C9CS00778D-(cit193)/*[position()=1]
  publication-title: Anal. Methods
  doi: 10.1039/C7AY00627F
– volume: 10
  start-page: 23976
  year: 2018
  ident: C9CS00778D-(cit288)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b06103
– volume: 249
  start-page: 141
  year: 2017
  ident: C9CS00778D-(cit303)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2017.02.028
– volume: 91
  start-page: 4845
  year: 2019
  ident: C9CS00778D-(cit165)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b00493
– volume: 48
  start-page: 2783
  year: 2019
  ident: C9CS00778D-(cit32)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00829A
– volume: 136
  start-page: 7241
  year: 2014
  ident: C9CS00778D-(cit260)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502643p
– volume: 251
  start-page: 170
  year: 2017
  ident: C9CS00778D-(cit341)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2017.04.024
– volume: 133
  start-page: 4172
  year: 2011
  ident: C9CS00778D-(cit342)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja109437d
– volume: 1
  start-page: 243
  year: 2015
  ident: C9CS00778D-(cit336)/*[position()=1]
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.5b00236
– volume: 39
  start-page: 883
  year: 2020
  ident: C9CS00778D-(cit214)/*[position()=1]
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.9b00735
– volume: 57
  start-page: 1417
  year: 2018
  ident: C9CS00778D-(cit290)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b02827
– volume: 295
  start-page: 687
  year: 2019
  ident: C9CS00778D-(cit167)/*[position()=1]
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2019.06.050
– volume: 90
  start-page: 3608
  year: 2018
  ident: C9CS00778D-(cit218)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b00146
– volume: 255
  start-page: 2483
  year: 2018
  ident: C9CS00778D-(cit246)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2017.09.041
– volume: 201
  start-page: 413
  year: 2014
  ident: C9CS00778D-(cit327)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2014.05.051
– volume: 10
  start-page: 3260
  year: 2019
  ident: C9CS00778D-(cit22)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11267-w
– volume: 135
  start-page: 4040
  year: 2013
  ident: C9CS00778D-(cit74)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312347p
– volume: 15
  start-page: 5327
  year: 2015
  ident: C9CS00778D-(cit247)/*[position()=1]
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2015.2438063
– volume: 6
  start-page: 88991
  year: 2016
  ident: C9CS00778D-(cit174)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA19403F
– volume: 62
  start-page: 1445
  year: 2019
  ident: C9CS00778D-(cit184)/*[position()=1]
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-019-9457-5
– volume: 28
  start-page: 5229
  year: 2016
  ident: C9CS00778D-(cit285)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506457
– volume: 28
  start-page: 5264
  year: 2016
  ident: C9CS00778D-(cit94)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02528
– volume: 7
  start-page: 4012
  year: 2019
  ident: C9CS00778D-(cit242)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05368
– year: 2020
  ident: C9CS00778D-(cit21)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00666
– volume: 5
  start-page: 10133
  year: 2017
  ident: C9CS00778D-(cit164)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC03312E
– volume: 139
  start-page: 16759
  year: 2017
  ident: C9CS00778D-(cit93)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08840
– volume: 4
  start-page: 4366
  year: 2014
  ident: C9CS00778D-(cit190)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep04366
– volume: 1
  start-page: 557
  year: 2016
  ident: C9CS00778D-(cit33)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2016.09.009
– volume: 1
  start-page: 1917
  year: 2016
  ident: C9CS00778D-(cit140)/*[position()=1]
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201600621
– volume: 8
  start-page: 12047
  year: 2016
  ident: C9CS00778D-(cit335)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR02446G
– volume: 269
  start-page: 588
  year: 2019
  ident: C9CS00778D-(cit305)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2018.10.044
– volume: 220
  start-page: 39
  year: 2016
  ident: C9CS00778D-(cit169)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2015.08.020
– volume: 45
  start-page: 10510
  year: 2016
  ident: C9CS00778D-(cit87)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C6DT01363E
– volume: 88
  start-page: 1748
  year: 2016
  ident: C9CS00778D-(cit154)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b03974
– volume: 54
  start-page: 2546
  year: 2018
  ident: C9CS00778D-(cit257)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC00564H
– volume: 253
  start-page: 430
  year: 2017
  ident: C9CS00778D-(cit304)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2017.06.015
– volume: 225
  start-page: 363
  year: 2016
  ident: C9CS00778D-(cit245)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2015.11.071
– volume: 56
  start-page: 16510
  year: 2017
  ident: C9CS00778D-(cit97)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201709558
– volume: 6
  start-page: 110182
  year: 2016
  ident: C9CS00778D-(cit296)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA23694D
– volume: 8
  start-page: 14414
  year: 2018
  ident: C9CS00778D-(cit159)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-32810-7
– volume: 354
  start-page: 28
  year: 2018
  ident: C9CS00778D-(cit80)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.06.007
– volume: 19
  start-page: 1693
  year: 2007
  ident: C9CS00778D-(cit286)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200601838
– volume: 8
  start-page: 10746
  year: 2018
  ident: C9CS00778D-(cit299)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C7RA13494K
– volume: 50
  start-page: 1444
  year: 2014
  ident: C9CS00778D-(cit113)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C3CC47723A
– volume: 86
  start-page: 6948
  year: 2014
  ident: C9CS00778D-(cit312)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac500759n
– volume: 8
  start-page: 3622
  year: 2020
  ident: C9CS00778D-(cit209)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC00117A
– volume: 51
  start-page: 1677
  year: 2015
  ident: C9CS00778D-(cit265)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC08945F
– volume: 55
  start-page: 194
  year: 2018
  ident: C9CS00778D-(cit103)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC07573E
– volume: 62
  start-page: 1655
  year: 2019
  ident: C9CS00778D-(cit83)/*[position()=1]
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-019-1169-9
– volume: 11
  start-page: 170
  year: 2019
  ident: C9CS00778D-(cit34)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0171-z
– volume: 84
  start-page: 307
  year: 2019
  ident: C9CS00778D-(cit326)/*[position()=1]
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201900109
– volume: 21
  start-page: 9994
  year: 2015
  ident: C9CS00778D-(cit196)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201501043
– volume: 6
  start-page: 7030
  year: 2018
  ident: C9CS00778D-(cit253)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC02400F
– volume: 10
  start-page: 78
  year: 2017
  ident: C9CS00778D-(cit11)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2875
– volume: 54
  start-page: 1651
  year: 2015
  ident: C9CS00778D-(cit158)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201410612
– volume: 12
  start-page: 4155
  year: 2020
  ident: C9CS00778D-(cit331)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b20763
– volume: 49
  start-page: 2378
  year: 2020
  ident: C9CS00778D-(cit45)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00880B
– volume: 502
  start-page: 8
  year: 2017
  ident: C9CS00778D-(cit143)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.04.081
– volume: 11
  start-page: 14175
  year: 2019
  ident: C9CS00778D-(cit241)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b22002
– volume: 81
  start-page: 758
  year: 2016
  ident: C9CS00778D-(cit329)/*[position()=1]
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201600057
– volume: 24
  start-page: 5866
  year: 2014
  ident: C9CS00778D-(cit136)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201401125
– volume: 141
  start-page: 2046
  year: 2019
  ident: C9CS00778D-(cit230)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11257
– volume: 18
  start-page: 3746
  year: 2016
  ident: C9CS00778D-(cit61)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C6CE00545D
– start-page: 3411
  year: 2016
  ident: C9CS00778D-(cit293)/*[position()=1]
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201600184
– volume: 2
  start-page: 52
  year: 2017
  ident: C9CS00778D-(cit46)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2016.12.002
– volume: 241
  start-page: 938
  year: 2017
  ident: C9CS00778D-(cit338)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2016.11.017
– volume: 4
  start-page: 7053
  year: 2014
  ident: C9CS00778D-(cit183)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep07053
– volume: 343
  start-page: 66
  year: 2014
  ident: C9CS00778D-(cit25)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1246738
– volume: 141
  start-page: 5005
  year: 2019
  ident: C9CS00778D-(cit278)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b00654
– volume: 57
  start-page: 15086
  year: 2018
  ident: C9CS00778D-(cit98)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201808242
– volume: 46
  start-page: 3353
  year: 2017
  ident: C9CS00778D-(cit258)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT00298J
– volume: 12
  start-page: 13338
  year: 2020
  ident: C9CS00778D-(cit238)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c00143
– volume: 6
  start-page: 12115
  year: 2018
  ident: C9CS00778D-(cit215)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02036A
– volume: 9
  start-page: 3914
  year: 2017
  ident: C9CS00778D-(cit185)/*[position()=1]
  publication-title: Anal. Methods
  doi: 10.1039/C7AY01193H
– volume: 7
  start-page: 4164
  year: 2019
  ident: C9CS00778D-(cit107)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC06630B
– volume: 52
  start-page: 2265
  year: 2016
  ident: C9CS00778D-(cit266)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC09029F
– volume: 9
  start-page: 2918
  year: 2018
  ident: C9CS00778D-(cit262)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC00021B
– volume: 260
  start-page: 63
  year: 2018
  ident: C9CS00778D-(cit219)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2017.12.187
– volume: 295
  start-page: 469
  year: 2002
  ident: C9CS00778D-(cit7)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1067208
– volume: 43
  start-page: 5815
  year: 2014
  ident: C9CS00778D-(cit52)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00010B
– volume: 17
  start-page: 1108
  year: 2017
  ident: C9CS00778D-(cit64)/*[position()=1]
  publication-title: Sensors
  doi: 10.3390/s17051108
– volume: 47
  start-page: 8134
  year: 2018
  ident: C9CS00778D-(cit36)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00256H
– volume: 29
  start-page: 5927
  year: 2013
  ident: C9CS00778D-(cit281)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la400508y
– volume: 7
  start-page: 5652
  year: 2019
  ident: C9CS00778D-(cit123)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC01288E
– volume: 54
  start-page: 5232
  year: 2015
  ident: C9CS00778D-(cit319)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b00179
– volume: 17
  start-page: 16977
  year: 2015
  ident: C9CS00778D-(cit124)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP01441G
– volume: 56
  start-page: 14982
  year: 2017
  ident: C9CS00778D-(cit315)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201708973
– volume: 95
  start-page: 78
  year: 2018
  ident: C9CS00778D-(cit251)/*[position()=1]
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2018.07.002
– volume: 177
  start-page: 114314
  year: 2020
  ident: C9CS00778D-(cit311)/*[position()=1]
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2019.114314
– volume: 51
  start-page: 376
  year: 2015
  ident: C9CS00778D-(cit268)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC06729K
– volume: 58
  start-page: 14089
  year: 2019
  ident: C9CS00778D-(cit277)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201906222
– volume: 57
  start-page: 9839
  year: 2018
  ident: C9CS00778D-(cit217)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b00502
– volume: 141
  start-page: 223
  year: 2018
  ident: C9CS00778D-(cit307)/*[position()=1]
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2017.11.037
– volume: 49
  start-page: 1517
  year: 2020
  ident: C9CS00778D-(cit15)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00098D
– volume: 7
  start-page: 2286
  year: 2016
  ident: C9CS00778D-(cit108)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC04461H
– volume: 2
  start-page: 579
  year: 2017
  ident: C9CS00778D-(cit153)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.02.010
– volume: 8
  start-page: 11649
  year: 2016
  ident: C9CS00778D-(cit135)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR01206J
– volume: 236
  start-page: 988
  year: 2016
  ident: C9CS00778D-(cit256)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2016.04.064
– volume: 81
  start-page: 675
  year: 2016
  ident: C9CS00778D-(cit82)/*[position()=1]
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201600137
– volume: 17
  start-page: 1027
  year: 2018
  ident: C9CS00778D-(cit26)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0189-z
– volume: 112
  start-page: 1126
  year: 2012
  ident: C9CS00778D-(cit42)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200101d
– volume: 255
  start-page: 97
  year: 2017
  ident: C9CS00778D-(cit189)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2017.07.027
– volume: 143
  start-page: 1482
  year: 2018
  ident: C9CS00778D-(cit192)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/C7AN01964E
– volume: 88
  start-page: 12234
  year: 2016
  ident: C9CS00778D-(cit274)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b03364
– volume: 4
  start-page: 3862
  year: 2019
  ident: C9CS00778D-(cit292)/*[position()=1]
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201803835
– volume: 410
  start-page: 213222
  year: 2020
  ident: C9CS00778D-(cit68)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213222
– volume: 45
  start-page: 18450
  year: 2016
  ident: C9CS00778D-(cit162)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C6DT03812C
– volume: 335
  start-page: 28
  year: 2017
  ident: C9CS00778D-(cit73)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2016.12.002
– volume: 56
  start-page: 336
  year: 2017
  ident: C9CS00778D-(cit109)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b02243
– volume: 4
  start-page: 6247
  year: 2014
  ident: C9CS00778D-(cit282)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep06247
– volume: 17
  start-page: 21634
  year: 2015
  ident: C9CS00778D-(cit171)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP01988E
– volume: 52
  start-page: 710
  year: 2013
  ident: C9CS00778D-(cit348)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201207610
– volume: 2
  start-page: 6426
  year: 2014
  ident: C9CS00778D-(cit249)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA15071B
– volume: 1
  start-page: 1188
  year: 2016
  ident: C9CS00778D-(cit330)/*[position()=1]
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.6b00295
– volume: 89
  start-page: 13434
  year: 2017
  ident: C9CS00778D-(cit156)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b03723
– volume: 22
  start-page: 18418
  year: 2012
  ident: C9CS00778D-(cit191)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm32802j
– volume: 243
  start-page: 8
  year: 2017
  ident: C9CS00778D-(cit195)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2016.11.085
– volume: 44
  start-page: 13586
  year: 2015
  ident: C9CS00778D-(cit88)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT01791B
– volume: 96
  start-page: 16
  year: 2018
  ident: C9CS00778D-(cit308)/*[position()=1]
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2018.07.042
– volume: 53
  start-page: 5411
  year: 2014
  ident: C9CS00778D-(cit100)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic500474j
– volume: 4
  start-page: 1586
  year: 2019
  ident: C9CS00778D-(cit280)/*[position()=1]
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.9b00268
– volume: 10
  start-page: 2837
  year: 2018
  ident: C9CS00778D-(cit223)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16761
– volume: 22
  start-page: 1698
  year: 2012
  ident: C9CS00778D-(cit231)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102157
– volume: 141
  start-page: 18211
  year: 2019
  ident: C9CS00778D-(cit72)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b09103
– volume: 132
  start-page: 922
  year: 2010
  ident: C9CS00778D-(cit127)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja909629f
– volume: 57
  start-page: 12961
  year: 2018
  ident: C9CS00778D-(cit225)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201805355
– volume: 54
  start-page: 8233
  year: 2018
  ident: C9CS00778D-(cit349)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC03662D
– volume: 136
  start-page: 71
  year: 2015
  ident: C9CS00778D-(cit202)/*[position()=1]
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2015.04.035
– volume: 49
  start-page: 7156
  year: 2013
  ident: C9CS00778D-(cit206)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc44575e
– volume: 51
  start-page: 2280
  year: 2015
  ident: C9CS00778D-(cit227)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC08136F
– volume: 271
  start-page: 33
  year: 2018
  ident: C9CS00778D-(cit289)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2018.05.113
– volume: 251
  start-page: 667
  year: 2017
  ident: C9CS00778D-(cit339)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2017.05.063
– volume: 245
  start-page: 1039
  year: 2017
  ident: C9CS00778D-(cit177)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2017.02.005
– volume: 133
  start-page: 1220
  year: 2011
  ident: C9CS00778D-(cit141)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja109103t
– volume: 50
  start-page: 2789
  year: 2017
  ident: C9CS00778D-(cit58)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00387
– volume: 55
  start-page: 349
  year: 2019
  ident: C9CS00778D-(cit216)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC06875E
– volume: 539
  start-page: 76
  year: 2016
  ident: C9CS00778D-(cit10)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature19763
– volume: 46
  start-page: 12856
  year: 2017
  ident: C9CS00778D-(cit194)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT02293J
– volume: 40
  start-page: 8600
  year: 2016
  ident: C9CS00778D-(cit291)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C6NJ02163H
– volume: 47
  start-page: 533
  year: 2018
  ident: C9CS00778D-(cit20)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00653E
– volume: 45
  start-page: 14888
  year: 2016
  ident: C9CS00778D-(cit270)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C6DT02169G
– volume: 54
  start-page: 4349
  year: 2015
  ident: C9CS00778D-(cit95)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201411854
– volume: 27
  start-page: 7601
  year: 2015
  ident: C9CS00778D-(cit117)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02476
– volume: 134
  start-page: 9050
  year: 2012
  ident: C9CS00778D-(cit322)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja302110d
– volume: 5
  start-page: 1064
  year: 2017
  ident: C9CS00778D-(cit150)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC05082D
– volume: 55
  start-page: 15879
  year: 2016
  ident: C9CS00778D-(cit198)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201608780
– volume: 17
  start-page: 423
  year: 2016
  ident: C9CS00778D-(cit314)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.6b01744
– volume: 4
  start-page: 8514
  year: 2016
  ident: C9CS00778D-(cit144)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC02569B
– volume: 5
  start-page: 9943
  year: 2017
  ident: C9CS00778D-(cit186)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC02430D
– volume: 28
  start-page: 2652
  year: 2016
  ident: C9CS00778D-(cit86)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00016
– volume: 52
  start-page: 10249
  year: 2016
  ident: C9CS00778D-(cit267)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC05290H
– volume: 54
  start-page: 11590
  year: 2015
  ident: C9CS00778D-(cit344)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b02150
– volume: 32
  start-page: 1805871
  year: 2020
  ident: C9CS00778D-(cit81)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805871
– volume: 24
  start-page: 10829
  year: 2018
  ident: C9CS00778D-(cit213)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201801844
– volume: 119
  start-page: 478
  year: 2019
  ident: C9CS00778D-(cit63)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00311
– volume: 7
  start-page: 721
  year: 2015
  ident: C9CS00778D-(cit309)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5070409
– volume: 10
  start-page: 10209
  year: 2019
  ident: C9CS00778D-(cit48)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC03916C
– volume: 11
  start-page: 1713
  year: 2019
  ident: C9CS00778D-(cit211)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b18891
– volume: 10
  start-page: 7496
  year: 2019
  ident: C9CS00778D-(cit102)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC02274K
– volume: 355
  start-page: 814
  year: 2015
  ident: C9CS00778D-(cit188)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.07.166
– volume: 32
  start-page: 841
  year: 2019
  ident: C9CS00778D-(cit155)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b04440
– volume: 6
  start-page: 9248
  year: 2018
  ident: C9CS00778D-(cit161)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC01454J
– volume: 53
  start-page: 1575
  year: 2014
  ident: C9CS00778D-(cit261)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201307331
– volume: 81
  start-page: 733
  year: 2016
  ident: C9CS00778D-(cit76)/*[position()=1]
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201500564
– volume: 278
  start-page: 153
  year: 2019
  ident: C9CS00778D-(cit283)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2018.07.006
– volume: 8
  start-page: 2881
  year: 2016
  ident: C9CS00778D-(cit205)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR06066D
– volume: 47
  start-page: 4710
  year: 2018
  ident: C9CS00778D-(cit60)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00861A
– volume: 58
  start-page: 14915
  year: 2019
  ident: C9CS00778D-(cit101)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201907772
– volume: 412
  start-page: 213262
  year: 2020
  ident: C9CS00778D-(cit38)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213262
– volume: 57
  start-page: 14930
  year: 2018
  ident: C9CS00778D-(cit105)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b02625
– volume: 7
  start-page: 14493
  year: 2015
  ident: C9CS00778D-(cit118)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03932
– volume: 118
  start-page: 8889
  year: 2018
  ident: C9CS00778D-(cit17)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00222
– volume: 112
  start-page: 1105
  year: 2012
  ident: C9CS00778D-(cit49)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200324t
– volume: 46
  start-page: 6927
  year: 2017
  ident: C9CS00778D-(cit44)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00283A
– volume: 136
  start-page: 17477
  year: 2014
  ident: C9CS00778D-(cit151)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja508592f
– volume: 253
  start-page: 146
  year: 2017
  ident: C9CS00778D-(cit208)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2017.06.053
– volume: 5
  start-page: 469
  year: 2020
  ident: C9CS00778D-(cit328)/*[position()=1]
  publication-title: Mol. Syst. Des. Eng.
  doi: 10.1039/C9ME00133F
– volume: 220
  start-page: 614
  year: 2015
  ident: C9CS00778D-(cit199)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2015.05.125
– volume: 466
  start-page: 410
  year: 2017
  ident: C9CS00778D-(cit197)/*[position()=1]
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/j.ica.2017.06.067
– volume: 14
  start-page: 1801563
  year: 2018
  ident: C9CS00778D-(cit179)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201801563
– volume: 8
  start-page: 15985
  year: 2017
  ident: C9CS00778D-(cit84)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15985
– volume: 25
  start-page: 5463
  year: 2019
  ident: C9CS00778D-(cit139)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201806146
– year: 2019
  ident: C9CS00778D-(cit13)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00350
– volume: 43
  start-page: 3666
  year: 2014
  ident: C9CS00778D-(cit54)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00039K
– volume: 51
  start-page: 6111
  year: 2015
  ident: C9CS00778D-(cit232)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC00773A
– volume: 253
  start-page: 275
  year: 2017
  ident: C9CS00778D-(cit340)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2017.06.064
– volume: 86
  start-page: 11459
  year: 2014
  ident: C9CS00778D-(cit180)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac503622n
– volume: 254
  start-page: 872
  year: 2018
  ident: C9CS00778D-(cit273)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2017.07.026
– volume: 46
  start-page: 3357
  year: 2017
  ident: C9CS00778D-(cit55)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00108H
– volume: 4
  start-page: 351
  year: 2013
  ident: C9CS00778D-(cit263)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C2SC21181E
– volume: 251
  start-page: 79
  year: 2017
  ident: C9CS00778D-(cit301)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2017.04.014
– volume: 43
  start-page: 5994
  year: 2014
  ident: C9CS00778D-(cit39)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00096J
– volume: 139
  start-page: 8098
  year: 2017
  ident: C9CS00778D-(cit29)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03633
– volume: 4
  start-page: 6588
  year: 2016
  ident: C9CS00778D-(cit320)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC01297C
– volume: 49
  start-page: 301
  year: 2020
  ident: C9CS00778D-(cit23)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00614D
– volume: 353
  start-page: 137
  year: 2016
  ident: C9CS00778D-(cit12)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaf6323
– volume: 3
  start-page: 1500434
  year: 2016
  ident: C9CS00778D-(cit57)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500434
– volume: 10
  start-page: 24201
  year: 2018
  ident: C9CS00778D-(cit112)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b07377
– volume: 501
  start-page: 119241
  year: 2020
  ident: C9CS00778D-(cit275)/*[position()=1]
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/j.ica.2019.119241
– volume: 46
  start-page: 3242
  year: 2017
  ident: C9CS00778D-(cit53)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00930A
– volume: 54
  start-page: 9789
  year: 2018
  ident: C9CS00778D-(cit200)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC05459B
– volume: 5
  start-page: 2215
  year: 2017
  ident: C9CS00778D-(cit337)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA10019H
– volume: 269
  start-page: 110
  year: 2018
  ident: C9CS00778D-(cit170)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2018.05.002
SSID ssj0011762
Score 2.727896
SecondaryResourceType review_article
Snippet Developing efficient sensor materials with superior performance for selective, fast and sensitive detection of gases and volatile organic compounds (VOCs) is...
This review summarizes the recent advances of metal organic framework (MOF) based sensing of gases and volatile compounds.
SourceID osti
proquest
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6364
SubjectTerms Air monitoring
air pollution
Alcohols
Aldehydes
Aliphatic hydrocarbons
Ammonia
carbon
Carbon disulfide
Carbon oxides
chemical species
Construction materials
coordination polymers
Detection
Dimethylformamide
early diagnosis
electrical conductivity
Electrical resistivity
electricity
Environmental monitoring
environmental protection
Ferroelectricity
food quality
human health
Hydrocarbons
Hydrogen sulfide
Indoor environments
information sources
Ketones
ligands
luminescence
Magnetic properties
magnetism
metal ions
monitoring
nitrous oxide
oxygen
physicochemical properties
Pollution monitoring
Porosity
Porous materials
Sensors
society
sulfur dioxide
surface area
Switches
Switching
toxicity
VOCs
Volatile organic compounds
Water vapor
Title Functional metal-organic frameworks as effective sensors of gases and volatile compounds
URI https://www.proquest.com/docview/2438963059
https://www.proquest.com/docview/2430377229
https://www.proquest.com/docview/2511196732
https://www.osti.gov/biblio/1644724
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gFe0LhMZBvICF4Qymhj5-LHqbQaUylCa6XCS-T4siGNdlqSF379jhPbaUWFBi9RlFhO5PP5XOzj8yH0jmrJuc6KkMqChTTV1BxWhqiVFlmSZEpkDX3bl1lyvqAXy3jZ6003spbqqjgVv3eeK_kfqcIzkKs5JfsPkvWdwgO4B_nCFSQM1wfJeAJGya7l_VLgRYctR5P4oF3KVWl4ZNqcDZMiVELQath1wEO8AvPV1mcGBQX93agmvdywLJWbHquvKODyO239Up_J09Je85_hd26tYLsO3azBXl7X4cxr_h9ucfq6hrvwW72RENR0c-EMqV2HgKDT7KqkG6qTJgMQdlvN8VTteGb1bVui1OEq3dCeCWkrmv-h1gfEVEUVTJSm_FAmO-PlNuxnX_PJYjrN5-PlfA_tRxA0RH20fzaef576XaVh2hDM-r9y5WoJ-9j1veWg9NegaLeCj707xwzTeCDzA_TEhg74rMXBU9RTq2fo0cgx9j1Hyw4PeAsPuMMD5iX2eMAWD3itcYMHDHjADg_Y4-EFWkzG89F5aJkzQkFJUoWKES04y2KYiSkbalHIWIGzQomMIkmGnEmZCKKSTMYiFjzOpCEikOCtRZzD_DxE_dV6pV4iPBBaaSLUIJLgOUfaEEAat04zqTOS6QC9d8OVC1tW3rCb3ORNegNh-YiNLpuh_RSgt77tbVtMZWerYzPqObiApo6xMAlfosohrqdpRAN04oSR26lY5hEFvzsB08UC9Ma_htE3u198pdZ102ZADCz-1gbCDzBJKYkCdAiC9n_ZwSNAR7tf5LdSHz3g68focTd9TlC_uqvVK3Bsq-K1xes9oPqmtw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+metal-organic+frameworks+as+effective+sensors+of+gases+and+volatile+compounds&rft.jtitle=Chemical+Society+reviews&rft.au=Li%2C+Hai-Yang&rft.au=Zhao%2C+Shu-Na&rft.au=Zang%2C+Shuang-Quan&rft.au=Li%2C+Jing&rft.date=2020-09-07&rft.issn=1460-4744&rft.eissn=1460-4744&rft.volume=49&rft.issue=17&rft.spage=6364&rft_id=info:doi/10.1039%2Fc9cs00778d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon