Facilitation of serotonin-induced contraction of rat mesenteric artery by ketamine

Ketamine is an anesthetic with hypertensive effects, which make it useful for patients at risk of shock. However, previous studies reported vasodilatory actions of ketamine in isolated arteries. In this study, we reexamined the effects of ketamine on arterial tones in the presence and absence of phy...

Full description

Saved in:
Bibliographic Details
Published inThe Korean journal of physiology & pharmacology Vol. 20; no. 6; pp. 605 - 611
Main Authors Park, Sang Woong, Noh, Hyun Ju, Kim, Jung Min, Kim, Bokyung, Cho, Sung-Il, Kim, Yoon Soo, Woo, Nam Sik, Kim, Sung Hun, Bae, Young Min
Format Journal Article
LanguageEnglish
Published Korea (South) The Korean Physiological Society and The Korean Society of Pharmacology 01.11.2016
대한약리학회
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ketamine is an anesthetic with hypertensive effects, which make it useful for patients at risk of shock. However, previous studies reported vasodilatory actions of ketamine in isolated arteries. In this study, we reexamined the effects of ketamine on arterial tones in the presence and absence of physiological concentrations of 5-hydroxytryptamine (5-HT) and norepinephrine (NE) by measuring the isometric tension of endothelium-denuded rat mesenteric arterial rings. Ketamine little affected the resting tone of control mesenteric arterial rings, but, in the presence of 5-HT (100~200 nM), ketamine (10~100 µM) markedly contracted the arterial rings. Ketamine did not contract arterial rings in the presence of NE (10 nM), indicating that the vasoconstrictive action of ketamine is 5-HT-dependent. The concentration-response curves (CRCs) of 5-HT were clearly shifted to the left in the presence of ketamine (30 µM), whereas the CRCs of NE were little affected by ketamine. The left shift of the 5-HT CRCs caused by ketamine was reversed with ketanserin, a competitive 5-HT receptor inhibitor, indicating that ketamine facilitated the activation of 5-HT receptors. Anpirtoline and BW723C86, selective agonists of 5-HT and 5-HT receptors, respectively, did not contract arterial rings in the absence or presence of ketamine. These results indicate that ketamine specifically enhances 5-HT receptor-mediated vasoconstriction and that it is vasoconstrictive in a clinical setting. The facilitative action of ketamine on 5-HT receptors should be considered in ketamine-induced hypertension as well as in the pathogenesis of diseases such as schizophrenia, wherein experimental animal models are frequently generated using ketamine.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
G704-000764.2016.20.6.008
ISSN:1226-4512
2093-3827
DOI:10.4196/kjpp.2016.20.6.605