Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide

Porphyrin-based frameworks, as specific kinds of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in energy-related conversion processes, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and CO 2 reduction reaction (CO 2 RR),...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 5; no. 4; pp. 254 - 2581
Main Authors Liang, Zuozhong, Wang, Hong-Yan, Zheng, Haoquan, Zhang, Wei, Cao, Rui
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Porphyrin-based frameworks, as specific kinds of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in energy-related conversion processes, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and CO 2 reduction reaction (CO 2 RR), and also in energy-related storage technologies such as rechargeable Zn-air batteries. This review starts by summarizing typical crystal structures, molecular building blocks, and common synthetic procedures of various porphyrin-based frameworks used in energy-related technologies. Then, a brief introduction is provided and representative applications of porphyrin-based frameworks in ORR, OER, Zn-air batteries, and CO 2 RR are discussed. The performance comparison of these porphyrin-based frameworks in each field is also summarized and discussed, which pinpoints a clear structure-activity relationship. In addition to utilizing highly active porphyrin units for catalytic conversions, regulating the porous structures of porphyrin-based frameworks will enhance mass transfer and growing porphyrin-based frameworks on conductive supports will accelerate electron transfer, which will result in the improvement of the electrocatalytic performance. This review is therefore valuable for the rational design of more efficient porphyrin-based framework catalytic systems in energy-related conversion and storage technologies. The recent progress made on porphyrin-based frameworks and their applications in energy-related conversion technologies ( e.g. , ORR, OER and CO 2 RR) and storage technologies ( e.g. , Zn-air batteries).
AbstractList Porphyrin-based frameworks, as specific kinds of metal–organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in energy-related conversion processes, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and CO2 reduction reaction (CO2RR), and also in energy-related storage technologies such as rechargeable Zn–air batteries. This review starts by summarizing typical crystal structures, molecular building blocks, and common synthetic procedures of various porphyrin-based frameworks used in energy-related technologies. Then, a brief introduction is provided and representative applications of porphyrin-based frameworks in ORR, OER, Zn–air batteries, and CO2RR are discussed. The performance comparison of these porphyrin-based frameworks in each field is also summarized and discussed, which pinpoints a clear structure–activity relationship. In addition to utilizing highly active porphyrin units for catalytic conversions, regulating the porous structures of porphyrin-based frameworks will enhance mass transfer and growing porphyrin-based frameworks on conductive supports will accelerate electron transfer, which will result in the improvement of the electrocatalytic performance. This review is therefore valuable for the rational design of more efficient porphyrin-based framework catalytic systems in energy-related conversion and storage technologies.
Porphyrin-based frameworks, as specific kinds of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in energy-related conversion processes, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and CO 2 reduction reaction (CO 2 RR), and also in energy-related storage technologies such as rechargeable Zn-air batteries. This review starts by summarizing typical crystal structures, molecular building blocks, and common synthetic procedures of various porphyrin-based frameworks used in energy-related technologies. Then, a brief introduction is provided and representative applications of porphyrin-based frameworks in ORR, OER, Zn-air batteries, and CO 2 RR are discussed. The performance comparison of these porphyrin-based frameworks in each field is also summarized and discussed, which pinpoints a clear structure-activity relationship. In addition to utilizing highly active porphyrin units for catalytic conversions, regulating the porous structures of porphyrin-based frameworks will enhance mass transfer and growing porphyrin-based frameworks on conductive supports will accelerate electron transfer, which will result in the improvement of the electrocatalytic performance. This review is therefore valuable for the rational design of more efficient porphyrin-based framework catalytic systems in energy-related conversion and storage technologies. The recent progress made on porphyrin-based frameworks and their applications in energy-related conversion technologies ( e.g. , ORR, OER and CO 2 RR) and storage technologies ( e.g. , Zn-air batteries).
Porphyrin-based frameworks, as specific kinds of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in energy-related conversion processes, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and CO2 reduction reaction (CO2RR), and also in energy-related storage technologies such as rechargeable Zn-air batteries. This review starts by summarizing typical crystal structures, molecular building blocks, and common synthetic procedures of various porphyrin-based frameworks used in energy-related technologies. Then, a brief introduction is provided and representative applications of porphyrin-based frameworks in ORR, OER, Zn-air batteries, and CO2RR are discussed. The performance comparison of these porphyrin-based frameworks in each field is also summarized and discussed, which pinpoints a clear structure-activity relationship. In addition to utilizing highly active porphyrin units for catalytic conversions, regulating the porous structures of porphyrin-based frameworks will enhance mass transfer and growing porphyrin-based frameworks on conductive supports will accelerate electron transfer, which will result in the improvement of the electrocatalytic performance. This review is therefore valuable for the rational design of more efficient porphyrin-based framework catalytic systems in energy-related conversion and storage technologies.Porphyrin-based frameworks, as specific kinds of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in energy-related conversion processes, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and CO2 reduction reaction (CO2RR), and also in energy-related storage technologies such as rechargeable Zn-air batteries. This review starts by summarizing typical crystal structures, molecular building blocks, and common synthetic procedures of various porphyrin-based frameworks used in energy-related technologies. Then, a brief introduction is provided and representative applications of porphyrin-based frameworks in ORR, OER, Zn-air batteries, and CO2RR are discussed. The performance comparison of these porphyrin-based frameworks in each field is also summarized and discussed, which pinpoints a clear structure-activity relationship. In addition to utilizing highly active porphyrin units for catalytic conversions, regulating the porous structures of porphyrin-based frameworks will enhance mass transfer and growing porphyrin-based frameworks on conductive supports will accelerate electron transfer, which will result in the improvement of the electrocatalytic performance. This review is therefore valuable for the rational design of more efficient porphyrin-based framework catalytic systems in energy-related conversion and storage technologies.
Porphyrin-based frameworks, as specific kinds of metal–organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in energy-related conversion processes, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and CO₂ reduction reaction (CO₂RR), and also in energy-related storage technologies such as rechargeable Zn–air batteries. This review starts by summarizing typical crystal structures, molecular building blocks, and common synthetic procedures of various porphyrin-based frameworks used in energy-related technologies. Then, a brief introduction is provided and representative applications of porphyrin-based frameworks in ORR, OER, Zn–air batteries, and CO₂RR are discussed. The performance comparison of these porphyrin-based frameworks in each field is also summarized and discussed, which pinpoints a clear structure–activity relationship. In addition to utilizing highly active porphyrin units for catalytic conversions, regulating the porous structures of porphyrin-based frameworks will enhance mass transfer and growing porphyrin-based frameworks on conductive supports will accelerate electron transfer, which will result in the improvement of the electrocatalytic performance. This review is therefore valuable for the rational design of more efficient porphyrin-based framework catalytic systems in energy-related conversion and storage technologies.
Porphyrin-based frameworks, as specific kinds of metal–organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in energy-related conversion processes, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and CO 2 reduction reaction (CO 2 RR), and also in energy-related storage technologies such as rechargeable Zn–air batteries. This review starts by summarizing typical crystal structures, molecular building blocks, and common synthetic procedures of various porphyrin-based frameworks used in energy-related technologies. Then, a brief introduction is provided and representative applications of porphyrin-based frameworks in ORR, OER, Zn–air batteries, and CO 2 RR are discussed. The performance comparison of these porphyrin-based frameworks in each field is also summarized and discussed, which pinpoints a clear structure–activity relationship. In addition to utilizing highly active porphyrin units for catalytic conversions, regulating the porous structures of porphyrin-based frameworks will enhance mass transfer and growing porphyrin-based frameworks on conductive supports will accelerate electron transfer, which will result in the improvement of the electrocatalytic performance. This review is therefore valuable for the rational design of more efficient porphyrin-based framework catalytic systems in energy-related conversion and storage technologies.
Author Zheng, Haoquan
Cao, Rui
Wang, Hong-Yan
Liang, Zuozhong
Zhang, Wei
AuthorAffiliation Shaanxi Normal University
Ministry of Education, School of Chemistry and Chemical Engineering
Key Laboratory of Applied Surface and Colloid Chemistry
AuthorAffiliation_xml – name: Key Laboratory of Applied Surface and Colloid Chemistry
– name: Shaanxi Normal University
– name: Ministry of Education, School of Chemistry and Chemical Engineering
Author_xml – sequence: 1
  givenname: Zuozhong
  surname: Liang
  fullname: Liang, Zuozhong
– sequence: 2
  givenname: Hong-Yan
  surname: Wang
  fullname: Wang, Hong-Yan
– sequence: 3
  givenname: Haoquan
  surname: Zheng
  fullname: Zheng, Haoquan
– sequence: 4
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
– sequence: 5
  givenname: Rui
  surname: Cao
  fullname: Cao, Rui
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33475099$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1LAzEQhoNUtK1evCsLXkRYTTbZjxylWhUKCup5TZOJRrebmuxi--9NbatQBA9DZibPOyQz00Od2taA0AHBZwRTfq6w9JiwItFbqEtYhmOWM9ZBXUxxFmNMkl3U8_4teCTPkh20SynLU8x5Fz3fWzd9nTtTx2PhQUXaiQl8WvfuI21dZGfzF6gjqEA2zkrRiGrujY9EraJl1BgZOVCtbIytI6tD2o2Dp4ydGQV7aFuLysP-6uyjp-HV4-AmHt1d3w4uRrFkNGtixQUHBqlWGC9eL1Kpx4XOE1YUKRSEElgkcLghKuVS5anWLBiRikImaR-dLOtOnf1owTflxHgJVSVqsK0vkzRhSVZkGfkfZTnPGaGMB_R4A32zravDRwLFGSU8LWigjlZUO56AKqfOTISbl-s2BwAvAems9w50KU0jFg1rnDBVSXC5mGR5iQcP35McBsnphmRd9U_4cAk7L3-437WgX8APqE4
CitedBy_id crossref_primary_10_1002_ange_202416771
crossref_primary_10_1016_j_ensm_2024_103297
crossref_primary_10_1039_D4QI00314D
crossref_primary_10_1039_D4TA07837C
crossref_primary_10_1016_j_jallcom_2022_163994
crossref_primary_10_1016_S1872_2067_20_63762_7
crossref_primary_10_1002_chem_202302474
crossref_primary_10_1021_acs_nanolett_4c05103
crossref_primary_10_1002_anie_202314439
crossref_primary_10_1021_acsami_3c10802
crossref_primary_10_1016_j_ccr_2024_215944
crossref_primary_10_1038_s41467_024_50377_y
crossref_primary_10_1002_anie_202411216
crossref_primary_10_1039_D1CC04928C
crossref_primary_10_1002_adma_202408094
crossref_primary_10_1002_aoc_7116
crossref_primary_10_1002_ejic_202400259
crossref_primary_10_1016_j_jcis_2023_04_082
crossref_primary_10_1016_j_apcatb_2022_121451
crossref_primary_10_1021_acs_biomac_3c01356
crossref_primary_10_1016_j_ccr_2022_214969
crossref_primary_10_3390_nano12071124
crossref_primary_10_1002_ange_202414104
crossref_primary_10_1002_adma_202105647
crossref_primary_10_1002_ange_202212710
crossref_primary_10_1360_TB_2024_0942
crossref_primary_10_1002_smll_202306273
crossref_primary_10_1016_j_diamond_2024_111147
crossref_primary_10_1039_D3TA04472F
crossref_primary_10_1002_anie_202500154
crossref_primary_10_1021_jacsau_4c00246
crossref_primary_10_1039_D1NJ02651H
crossref_primary_10_1002_smll_202301818
crossref_primary_10_1002_anie_202115503
crossref_primary_10_1007_s12274_022_4681_z
crossref_primary_10_1021_acsami_2c21616
crossref_primary_10_1016_j_checat_2024_101006
crossref_primary_10_1016_j_trechm_2022_07_007
crossref_primary_10_1002_adfm_202302561
crossref_primary_10_1002_sstr_202300495
crossref_primary_10_1002_sstr_202200087
crossref_primary_10_1016_j_jcis_2021_11_045
crossref_primary_10_1016_j_nanoms_2023_10_002
crossref_primary_10_1360_SSC_2022_0056
crossref_primary_10_1039_D1TA00802A
crossref_primary_10_1016_j_apcatb_2022_121324
crossref_primary_10_1039_D4NJ03904A
crossref_primary_10_1016_j_jechem_2024_06_033
crossref_primary_10_1002_cssc_202200086
crossref_primary_10_1002_asia_202200161
crossref_primary_10_1039_D2CY01326F
crossref_primary_10_1039_D4TA02623C
crossref_primary_10_1039_D3QM01315D
crossref_primary_10_1039_D2QI01118B
crossref_primary_10_3390_ijms23116036
crossref_primary_10_1016_j_ccst_2022_100081
crossref_primary_10_1039_D2NR06190B
crossref_primary_10_3390_molecules27082586
crossref_primary_10_1039_D4BM00214H
crossref_primary_10_1039_D3TA06945A
crossref_primary_10_1039_D2DT00166G
crossref_primary_10_1002_cctc_202400438
crossref_primary_10_1016_j_cej_2024_156428
crossref_primary_10_1039_D3TA03023G
crossref_primary_10_1016_j_cattod_2023_114149
crossref_primary_10_1002_ange_202102523
crossref_primary_10_1016_j_cclet_2021_04_048
crossref_primary_10_1007_s40242_022_2219_2
crossref_primary_10_1016_j_electacta_2024_145113
crossref_primary_10_1002_cnl2_133
crossref_primary_10_1039_D2CP05786G
crossref_primary_10_3390_c7020047
crossref_primary_10_1039_D3CC05214A
crossref_primary_10_1016_j_cej_2024_151412
crossref_primary_10_1002_ange_202409793
crossref_primary_10_1039_D4TA00849A
crossref_primary_10_1016_j_ccr_2024_216240
crossref_primary_10_1016_j_jelechem_2022_117082
crossref_primary_10_1039_D3GC04332K
crossref_primary_10_1039_D4TA07187E
crossref_primary_10_1021_acs_analchem_4c05606
crossref_primary_10_1021_acs_inorgchem_4c03075
crossref_primary_10_1002_ejic_202200453
crossref_primary_10_1016_S1872_2067_21_63957_8
crossref_primary_10_1021_acs_inorgchem_4c03870
crossref_primary_10_1016_j_molstruc_2024_140978
crossref_primary_10_1039_D3SC06177A
crossref_primary_10_1002_ange_202500154
crossref_primary_10_1016_j_jcis_2021_08_210
crossref_primary_10_1002_anie_202414249
crossref_primary_10_1016_j_jobe_2024_108770
crossref_primary_10_1002_chem_202302395
crossref_primary_10_1039_D3NJ01288C
crossref_primary_10_1016_j_eurpolymj_2022_111734
crossref_primary_10_1002_ange_202115503
crossref_primary_10_1002_ange_202201104
crossref_primary_10_1021_acs_inorgchem_2c01517
crossref_primary_10_1021_acs_inorgchem_4c02460
crossref_primary_10_1016_j_jechem_2021_08_068
crossref_primary_10_1016_j_cej_2022_137964
crossref_primary_10_1021_acsnano_2c07542
crossref_primary_10_1002_aenm_202304371
crossref_primary_10_1002_kin_21743
crossref_primary_10_1002_ange_202302152
crossref_primary_10_1016_j_cclet_2021_11_055
crossref_primary_10_1021_acs_energyfuels_2c01544
crossref_primary_10_1016_j_ccr_2021_214264
crossref_primary_10_1016_j_isci_2025_112007
crossref_primary_10_1016_j_mtcata_2024_100044
crossref_primary_10_3390_polym15040915
crossref_primary_10_1016_j_mcat_2023_113797
crossref_primary_10_3390_catal12060671
crossref_primary_10_1002_celc_202200900
crossref_primary_10_1016_j_apcata_2024_119617
crossref_primary_10_1002_ejic_202400188
crossref_primary_10_1002_anie_202209602
crossref_primary_10_1016_j_ica_2022_121278
crossref_primary_10_1002_adfm_202417621
crossref_primary_10_1002_ange_202101562
crossref_primary_10_1016_j_jallcom_2025_179637
crossref_primary_10_1002_anie_202102523
crossref_primary_10_1126_sciadv_add5598
crossref_primary_10_1039_D4CC06012A
crossref_primary_10_1360_SSC_2022_0017
crossref_primary_10_1002_anie_202414104
crossref_primary_10_1021_jacs_2c09862
crossref_primary_10_1021_acscatal_4c01720
crossref_primary_10_1002_anie_202114648
crossref_primary_10_1002_ange_202209602
crossref_primary_10_1016_j_jallcom_2023_172775
crossref_primary_10_1016_j_apcatb_2023_122446
crossref_primary_10_1039_D3QM00844D
crossref_primary_10_1002_anie_202101562
crossref_primary_10_1002_ange_202414249
crossref_primary_10_1016_j_cclet_2024_110330
crossref_primary_10_1039_D1TA08146B
crossref_primary_10_1016_S1872_2067_23_64592_9
crossref_primary_10_1007_s12274_022_5307_1
crossref_primary_10_1002_anie_202305213
crossref_primary_10_1002_anie_202416771
crossref_primary_10_1039_D4DT00788C
crossref_primary_10_1002_ange_202314833
crossref_primary_10_1002_cctc_202401394
crossref_primary_10_1039_D3CC05597C
crossref_primary_10_1016_j_esci_2022_06_003
crossref_primary_10_1039_D2SC03238D
crossref_primary_10_1016_j_ccr_2021_213996
crossref_primary_10_1039_D2NJ00734G
crossref_primary_10_1016_j_jcis_2021_12_024
crossref_primary_10_1038_s41467_023_39544_9
crossref_primary_10_1016_j_jssc_2021_122616
crossref_primary_10_1039_D3QI00589E
crossref_primary_10_1002_ange_202114648
crossref_primary_10_1016_j_ijbiomac_2024_132893
crossref_primary_10_1021_acs_energyfuels_4c01963
crossref_primary_10_1016_j_eurpolymj_2021_110925
crossref_primary_10_1039_D4QI02101K
crossref_primary_10_1016_j_snb_2023_134703
crossref_primary_10_1039_D4CC01630K
crossref_primary_10_1002_ange_202305213
crossref_primary_10_1039_D3TB01380D
crossref_primary_10_3390_molecules29112563
crossref_primary_10_1016_j_apcatb_2024_123907
crossref_primary_10_1002_aenm_202402278
crossref_primary_10_1002_anie_202314833
crossref_primary_10_1039_D3AN00947E
crossref_primary_10_1016_j_fuel_2023_129760
crossref_primary_10_1002_smll_202310147
crossref_primary_10_1039_D1CC04369B
crossref_primary_10_1021_acs_jpcc_4c04313
crossref_primary_10_1002_adma_202101568
crossref_primary_10_1039_D3QM01190A
crossref_primary_10_1039_D3TA06745A
crossref_primary_10_1016_j_energy_2023_128766
crossref_primary_10_1016_j_jelechem_2023_117798
crossref_primary_10_1021_acs_accounts_1c00753
crossref_primary_10_1021_jacs_3c07471
crossref_primary_10_1016_j_molstruc_2025_141933
crossref_primary_10_1016_j_cclet_2025_111000
crossref_primary_10_1142_S1088424621500760
crossref_primary_10_1002_ange_202418443
crossref_primary_10_1016_j_ccr_2023_215039
crossref_primary_10_1016_j_mtsust_2023_100371
crossref_primary_10_1016_j_ijhydene_2023_11_096
crossref_primary_10_1016_S1872_2067_21_63980_3
crossref_primary_10_1021_acs_inorgchem_4c01049
crossref_primary_10_1002_ejic_202300374
crossref_primary_10_1002_ange_202302808
crossref_primary_10_1016_j_jcis_2023_12_004
crossref_primary_10_1002_ejic_202200744
crossref_primary_10_1007_s40242_021_1374_1
crossref_primary_10_1016_j_ccr_2024_215894
crossref_primary_10_1039_D2CS00843B
crossref_primary_10_1002_celc_202100492
crossref_primary_10_1016_j_ccr_2022_214563
crossref_primary_10_1016_j_enchem_2021_100065
crossref_primary_10_1021_acsanm_4c00719
crossref_primary_10_1039_D2QI02564G
crossref_primary_10_1039_D3CS00873H
crossref_primary_10_1016_j_jcou_2022_102132
crossref_primary_10_1016_S1872_2067_21_63939_6
crossref_primary_10_1360_TB_2022_0765
crossref_primary_10_1016_j_mcat_2024_114430
crossref_primary_10_1002_anie_202302152
crossref_primary_10_1039_D2TA01646J
crossref_primary_10_1002_smll_202308285
crossref_primary_10_1039_D2CC00865C
crossref_primary_10_1039_D4EE03704A
crossref_primary_10_1016_j_jcis_2021_08_117
crossref_primary_10_1007_s11051_022_05556_7
crossref_primary_10_1016_j_materresbull_2025_113329
crossref_primary_10_1002_anie_202409793
crossref_primary_10_1007_s00894_023_05659_5
crossref_primary_10_1016_j_cej_2021_133222
crossref_primary_10_1016_j_dyepig_2023_111873
crossref_primary_10_1038_s41467_021_26724_8
crossref_primary_10_1021_jacs_1c02145
crossref_primary_10_1039_D4CY00746H
crossref_primary_10_1002_ange_202411216
crossref_primary_10_1016_j_jcis_2023_01_121
crossref_primary_10_1039_D1SE01257F
crossref_primary_10_1039_D4NR02650K
crossref_primary_10_1016_j_cej_2023_147141
crossref_primary_10_1039_D2TA07289K
crossref_primary_10_1002_smll_202406180
crossref_primary_10_1002_sstr_202200150
crossref_primary_10_1021_acs_nanolett_2c00446
crossref_primary_10_1016_j_reactfunctpolym_2023_105718
crossref_primary_10_1021_jacs_2c13817
crossref_primary_10_1039_D4TA00998C
crossref_primary_10_1002_tcr_202100329
crossref_primary_10_1039_D2NR02499C
crossref_primary_10_1016_j_jssc_2021_122812
crossref_primary_10_1002_advs_202201134
crossref_primary_10_1016_j_ijhydene_2022_03_270
crossref_primary_10_1016_j_mcat_2022_112901
crossref_primary_10_1002_anie_202201104
crossref_primary_10_1016_j_ccr_2024_215794
crossref_primary_10_1039_D3TA08064A
crossref_primary_10_1002_cssc_202300841
crossref_primary_10_1002_cnma_202300027
crossref_primary_10_1039_D3TA07004B
crossref_primary_10_1021_acs_chemrev_2c00879
crossref_primary_10_1007_s12274_021_3962_2
crossref_primary_10_1002_cey2_303
crossref_primary_10_1039_D4CP04148H
crossref_primary_10_1016_j_apcatb_2023_122891
crossref_primary_10_1016_j_mtchem_2022_100777
crossref_primary_10_1021_jacs_4c10997
crossref_primary_10_1007_s40843_024_3165_6
crossref_primary_10_1016_j_cej_2024_150812
crossref_primary_10_2139_ssrn_4176726
crossref_primary_10_1002_ange_202317015
crossref_primary_10_1039_D3CS00727H
crossref_primary_10_1016_j_mcat_2024_114517
crossref_primary_10_1002_anie_202302808
crossref_primary_10_1515_corrrev_2024_0012
crossref_primary_10_1016_j_ensm_2022_08_022
crossref_primary_10_1016_j_jallcom_2021_161929
crossref_primary_10_1016_j_jelechem_2024_118445
crossref_primary_10_1080_00958972_2022_2103687
crossref_primary_10_1039_D4CE00889H
crossref_primary_10_1016_j_cej_2021_132038
crossref_primary_10_1016_j_snb_2023_134435
crossref_primary_10_1002_adfm_202311086
crossref_primary_10_1016_j_molstruc_2023_135559
crossref_primary_10_1002_chem_202302201
crossref_primary_10_1021_acs_jpclett_2c03235
crossref_primary_10_1002_aenm_202400160
crossref_primary_10_1039_D4CC02651A
crossref_primary_10_1016_j_tetlet_2025_155456
crossref_primary_10_1039_D3RA02142D
crossref_primary_10_1016_j_cej_2022_135150
crossref_primary_10_1016_j_ccr_2024_216385
crossref_primary_10_1016_j_seppur_2024_127090
crossref_primary_10_1002_aenm_202102062
crossref_primary_10_1039_D0CS01605E
crossref_primary_10_3390_catal12111485
crossref_primary_10_1021_acsnano_4c07613
crossref_primary_10_1002_pol_20230164
crossref_primary_10_1016_j_cej_2022_136129
crossref_primary_10_1002_chem_202401339
crossref_primary_10_1016_j_cclet_2022_108052
crossref_primary_10_1016_j_cej_2022_136128
crossref_primary_10_1002_ijch_202100077
crossref_primary_10_1142_S1088424622300075
crossref_primary_10_1002_asia_202200160
crossref_primary_10_3390_molecules29235655
crossref_primary_10_1360_SSC_2024_0121
crossref_primary_10_1002_anie_202114244
crossref_primary_10_1016_j_jcis_2025_02_173
crossref_primary_10_1021_acs_jpcc_1c07578
crossref_primary_10_1021_acsomega_3c01793
crossref_primary_10_1016_j_jcis_2025_01_247
crossref_primary_10_1039_D1NR07614K
crossref_primary_10_1016_j_jechem_2023_08_042
crossref_primary_10_1039_D2QI00336H
crossref_primary_10_1039_D4MA00739E
crossref_primary_10_3390_ijms25084183
crossref_primary_10_1007_s41664_024_00340_z
crossref_primary_10_1021_acs_analchem_3c03872
crossref_primary_10_1002_advs_202206239
crossref_primary_10_1016_j_cclet_2021_02_032
crossref_primary_10_1016_j_mtphys_2024_101392
crossref_primary_10_1021_acsanm_2c00831
crossref_primary_10_1002_adfm_202200763
crossref_primary_10_1021_acscatal_2c00847
crossref_primary_10_1039_D4CP01235F
crossref_primary_10_1021_acs_chemmater_1c03136
crossref_primary_10_1016_j_cej_2023_146491
crossref_primary_10_1002_adma_202302122
crossref_primary_10_1002_chem_202402575
crossref_primary_10_1021_acs_iecr_2c00152
crossref_primary_10_1039_D4GC00717D
crossref_primary_10_1039_D1CE00545F
crossref_primary_10_1002_ange_202314439
crossref_primary_10_1039_D4EE01748J
crossref_primary_10_1002_ange_202114244
crossref_primary_10_1002_ejoc_202201319
crossref_primary_10_1039_D1TA07989A
crossref_primary_10_1016_j_cej_2021_131089
crossref_primary_10_1002_cctc_202401674
crossref_primary_10_1016_j_checat_2025_101325
crossref_primary_10_1002_anie_202317015
crossref_primary_10_1016_j_cclet_2021_07_038
crossref_primary_10_1016_j_molstruc_2024_138340
crossref_primary_10_1039_D3QM00188A
crossref_primary_10_1016_j_jallcom_2024_174985
crossref_primary_10_1002_aenm_202302382
crossref_primary_10_1002_smtd_202200515
crossref_primary_10_1021_jacs_1c05204
crossref_primary_10_1002_adfm_202203224
crossref_primary_10_1016_j_desal_2024_118206
crossref_primary_10_1039_D2CC02775E
crossref_primary_10_1002_smm2_1102
crossref_primary_10_1002_agt2_330
crossref_primary_10_3390_molecules27165193
crossref_primary_10_1002_anie_202418443
crossref_primary_10_1002_anie_202212710
Cites_doi 10.1039/C6CS00724D
10.1002/anie.201915537
10.1016/j.dyepig.2020.108568
10.1039/C9SE00460B
10.1002/anie.201800817
10.1021/jacs.5b08440
10.1038/s41929-020-0450-0
10.1126/science.aac8343
10.1021/acs.chemrev.7b00459
10.1021/acscatal.5b00666
10.1002/advs.201700194
10.1126/science.1230444
10.1016/j.joule.2018.06.019
10.1039/C8CS00113H
10.1002/adma.201604685
10.1039/b001620i
10.1021/jacs.0c04758
10.1039/D0CS00017E
10.1039/C5DT04025F
10.1039/C7CC02113E
10.1039/c0sc00281j
10.1021/acs.accounts.9b00496
10.1021/jacs.7b04141
10.1021/acs.accounts.8b00010
10.1002/anie.201701104
10.1038/s41929-019-0304-9
10.1021/jp101011f
10.1039/C7CS00248C
10.1039/c2cc32832a
10.1038/nmat2769
10.1002/anie.202005242
10.1021/acs.organomet.8b00334
10.1039/C8SC04344B
10.1021/acscatal.5b01767
10.31635/ccschem.019.20190011
10.1021/jacs.7b04122
10.1021/jacs.9b10787
10.1039/C8CC02646G
10.1002/anie.201907399
10.1038/378703a0
10.1016/j.jinorgbio.2006.01.010
10.1021/jacs.7b11940
10.1126/sciadv.aap9252
10.1149/1.3521317
10.1039/C9CC06916J
10.1021/acs.chemmater.6b01370
10.1002/anie.202002311
10.1002/anie.201803873
10.1126/science.1083440
10.1021/ja500984k
10.1002/(SICI)1521-3773(19981231)37:24<3397::AID-ANIE3397>3.0.CO;2-N
10.1016/j.elecom.2015.01.021
10.1016/j.joule.2020.07.009
10.1021/ja106217u
10.1021/acs.chemrev.8b00074
10.1039/C9SC02711D
10.1126/science.aax4608
10.1021/jacs.5b00914
10.1021/acs.jpcc.5b10763
10.1038/nchem.2159
10.1021/cs3003098
10.1038/ncomms13461
10.1038/ncomms2812
10.1039/C8SC05247F
10.1021/ic300886s
10.1021/jacs.0c05909
10.1039/C7CC02400B
10.1021/jacs.0c05530
10.1021/acscatal.6b01579
10.1039/D0SE00271B
10.1002/aenm.201801280
10.1038/s41570-017-0087
10.1016/j.matt.2019.05.008
10.1002/anie.201204475
10.1038/s41586-019-1603-7
10.1021/jacs.9b02640
10.1016/j.chempr.2016.12.002
10.1021/jacs.9b01229
10.1039/C9CS00880B
10.1016/j.cclet.2019.03.026
10.1038/ncomms14675
10.1039/C5CE02106E
10.1016/S1872-2067(20)63681-6
10.1002/anie.201410738
10.1021/cr400572f
10.1038/s41929-018-0063-z
10.1021/jacs.0c07257
10.1021/acscatal.6b01815
10.1002/chem.201903064
10.1021/acs.accounts.8b00302
10.1021/jacs.5b06834
10.1039/C4TA06231K
10.1002/anie.201911441
10.1016/j.ccr.2017.09.001
10.1002/anie.201510001
10.1039/C3CP54361G
10.1002/anie.201916131
10.1021/acscatal.7b02647
10.1021/acscatal.9b00529
10.1002/smll.202001171
10.1039/C4DT01072H
10.1021/acscatal.0c01085
10.1142/S1088424620500157
10.1002/asia.202000438
10.1039/C8EE03403F
10.1021/jacs.0c03861
10.1002/chem.201500716
10.1002/anie.201900499
10.1021/acsaem.8b00797
10.1038/s41570-017-0098
10.1039/C9TA00040B
10.1002/adma.201804784
10.1039/C9EE04040D
10.1002/slct.201904580
10.1039/C8CS00897C
10.1021/acsenergylett.8b00245
10.1016/j.apcatb.2020.118908
10.1021/acsaem.8b01900
10.1038/ncomms4242
10.1016/j.cej.2020.125255
10.1021/acscatal.9b00213
10.1021/ja211433h
10.1002/adma.201500727
10.1021/acsenergylett.7b00119
10.1039/C7DT00823F
10.1002/anie.202010859
10.1016/j.nanoen.2018.02.015
10.1007/s41918-019-00031-9
10.1039/C3CS60472A
10.1021/jacs.9b09502
10.1016/j.joule.2018.09.019
10.1039/C5CS00670H
10.1038/s41586-019-1760-8
10.1002/cctc.201902034
10.1002/anie.201608597
10.1002/anie.201808226
10.1038/s41563-020-0610-2
10.1142/S1088424615300049
10.1016/j.ccr.2019.213157
10.1002/anie.201308896
10.1002/ejic.201900940
10.1039/C6CC00982D
10.1021/acs.chemmater.5b00882
10.1002/anie.202008787
10.1038/s41929-019-0235-5
10.1039/C6CC05430G
10.1039/C8DT03850C
10.1002/anie.201807854
10.1039/C8TA06785F
10.1039/c2dt11989g
10.1021/jp101036j
10.1002/adma.201904037
10.1039/C8RA08338J
10.3390/molecules21101348
10.1038/s41929-019-0306-7
10.1021/acscatal.8b01944
10.1039/c3cc43031f
10.1021/jp1012335
10.1021/jacs.9b13654
10.1039/C6CS00328A
10.1021/jacs.8b02983
10.1002/anie.201916595
10.1021/acscatal.9b00310
10.1021/cr500519c
10.1021/acscatal.0c00559
10.1007/s12274-016-1400-7
10.1002/adma.201304147
10.1002/adma.201805126
10.1039/C9DT04709C
10.1016/j.enchem.2020.100029
10.1126/science.1246738
10.1038/369727a0
10.1002/aenm.201900090
10.1002/adma.201806599
10.1039/C9CS00869A
10.1021/jacs.0c06329
10.1016/j.carbon.2011.07.004
10.1021/ar040173j
10.1039/C8CS00688A
10.1021/acs.inorgchem.7b00839
10.1021/acs.chemrev.5b00462
10.1039/C9EE03660A
10.1021/acscatal.0c01459
10.1002/anie.202003836
10.1021/jacs.8b08088
10.1002/advs.201801410
10.1021/acs.accounts.0c00044
10.1021/acsenergylett.7b00267
10.1021/ic402297f
10.1038/s41467-019-11868-5
10.1021/acs.chemmater.9b02718
10.1016/j.scib.2019.07.003
10.1002/adfm.201806884
10.1021/acs.inorgchem.0c00407
10.1016/j.chemosphere.2018.12.024
10.1002/cssc.201903071
10.1002/adma.201601909
10.3390/molecules25071598
10.1021/ic802117q
10.1021/ja310596a
10.1021/acs.chemrev.7b00542
10.1007/s10853-017-1768-0
10.1002/adma.201804799
10.1021/jacs.5b08212
10.1039/C4CP00523F
10.1002/adma.201705332
10.1038/srep24533
10.1002/chem.201203846
10.1002/anie.201506219
10.1021/jz3008535
10.1016/j.electacta.2015.05.004
10.1021/acscentsci.7b00180
10.1039/C4CS00001C
10.1016/j.electacta.2018.03.186
10.1038/nmat3087
10.1002/smll.202001847
10.1039/C6EE01109H
10.1002/anie.201007987
10.1021/jacs.6b04746
10.1021/acs.chemmater.8b04370
10.1246/cl.1977.1137
10.1002/celc.201902085
10.1039/C8EE00611C
10.1039/C8SC02220H
10.1038/nature11115
10.1039/C9NJ04017J
10.1039/C7MH00358G
10.1039/D0TA00962H
10.1039/C6TA05877A
10.1021/jacs.9b09227
10.1021/jacs.5b10484
10.1021/ic300825s
10.1039/C6CP08495H
10.1016/j.jechem.2020.05.015
10.1021/ja5095099
10.1021/ja505667t
10.1039/C7TA07978H
10.1021/ja510525s
10.1021/jacs.5b12652
10.1038/nature13991
10.1021/jacs.7b10194
10.1039/C7DT01694H
10.1246/cl.1979.305
10.1021/acsami.7b01547
10.1021/acs.jpcc.0c05144
10.1021/jacs.5b08773
10.1021/acs.chemrev.7b00689
10.1039/C8SC04529A
10.1038/s41467-018-06938-z
10.1002/chem.202000160
10.1021/acscentsci.6b00261
10.1021/jacs.9b10772
10.1002/batt.201800093
10.1016/j.chempr.2019.03.002
10.1021/ja028548o
10.1126/science.1224581
10.1021/cr500266a
10.1039/C7CY01653K
10.1021/cr200304e
10.1038/s41560-019-0450-y
10.1021/acs.chemrev.6b00299
10.1002/adma.201707483
10.1021/acs.chemrev.8b00056
10.1073/pnas.1315383110
10.1021/acs.jpclett.9b03897
10.1039/C9CS00163H
10.1039/C5CS00878F
10.1016/j.nanoen.2019.104233
10.1002/adma.201606134
10.1021/cr020443g
10.1021/acsenergylett.9b02756
10.1021/jacs.0c07206
10.1002/smtd.202000085
10.1016/j.electacta.2012.03.132
10.1021/acs.chemrev.7b00373
10.1021/jacs.9b11355
10.1021/acssuschemeng.8b04735
10.1002/adma.201503648
10.1039/C8CP07463A
10.1021/acs.accounts.5b00262
10.1021/acssuschemeng.8b05770
10.1039/C5QI00198F
10.1039/C5EE03694A
10.1039/C7CS00283A
10.1039/D0CS00278J
10.1002/pi.4908
10.1039/C4CS00015C
10.1002/anie.202003842
10.1002/asia.202000083
10.1039/B512982F
10.1016/j.cis.2020.102108
10.1039/C2CS35360A
10.1002/chem.201802585
10.1021/jacs.5b11720
10.1021/ja111042f
10.1002/adma.201502696
10.1002/adma.201900592
10.1021/acsami.8b20142
10.1002/cssc.201701196
10.1039/C2CS35072F
10.1002/aenm.201200013
10.1021/jacs.8b00605
10.1002/chem.201902203
10.1021/ja908488s
10.1002/adma.201704388
10.1038/s41467-019-14237-4
10.1021/acs.chemrev.7b00488
10.1039/C9SC05041H
10.1002/aenm.201301523
10.1021/jacs.6b12404
10.1021/jacs.5b00046
10.1002/adfm.201901301
10.1021/ic302369v
10.1126/science.1093087
10.1021/ja408084j
10.1021/acscatal.9b02583
10.1021/jacs.5b10754
10.1038/s41586-019-1798-7
10.1021/cr200190s
10.1002/anie.201904058
10.1038/s41929-019-0383-7
10.1021/acsami.0c06537
10.1038/nchem.2695
10.1002/smtd.201800415
10.1002/celc.201801859
10.1021/jacs.7b09553
10.1002/anie.202000601
10.1126/science.1120411
10.1016/j.trechm.2020.01.003
10.1021/acs.inorgchem.5b00924
10.1021/acs.chemrev.6b00546
10.1021/jacs.7b08678
10.1002/adma.201504766
10.1002/anie.201604311
10.1126/sciadv.aaw2322
10.1002/adma.201705112
10.1038/s41560-017-0018-7
10.1039/C8CS00376A
10.1002/anie.202006899
10.1021/ja512575v
10.1021/cr2003272
10.1021/jacs.9b02864
10.1039/C9TA07967J
10.1002/anie.201909880
10.1021/ja202138m
10.1021/acscatal.9b04477
10.1021/ja402727d
10.1016/j.ensm.2015.11.005
10.1039/C6TA03059A
10.1021/acsami.7b11229
10.1002/adma.201600108
10.1002/anie.201807996
10.1002/anie.201803262
10.1002/anie.201910309
10.1039/C5EE00762C
10.1002/anie.201907002
10.1021/cr400415k
10.1002/adma.201703663
10.1039/C8SC02294A
10.1021/ja00009a065
10.1126/science.1135844
10.1021/cr300463y
10.1039/c0cc01797c
10.1002/anie.201504830
10.1021/jacs.8b10334
10.1021/acsami.6b16834
10.1016/j.ensm.2018.12.021
10.1038/s41560-018-0308-8
10.1021/acscatal.8b04960
10.1038/s41570-018-0010-1
10.1002/anie.200352564
10.1039/C7CS00315C
10.1038/s41560-019-0355-9
10.1002/cssc.201802765
10.1039/C8EE01991F
10.1002/ejic.201700394
10.1002/anie.201814339
10.1002/celc.201600435
10.1021/acs.chemrev.7b00664
10.1002/anie.201202471
10.1038/s41929-018-0108-3
10.1039/C8EE00977E
10.1021/jacs.7b06459
10.1002/cctc.201600298
10.1016/j.jcis.2020.06.109
10.1038/s41929-018-0182-6
10.1002/aenm.201000010
10.1126/science.7652554
10.1039/C7SE00413C
10.1038/ncomms10942
10.1021/ic3001619
10.1142/S1088424615300013
10.1021/ol034581j
10.1021/ja3004914
10.1021/jacs.8b09521
10.1002/anie.199418391
10.1016/j.ijhydene.2014.09.164
10.1021/acs.chemrev.5b00340
10.1038/s41467-020-16715-6
10.1002/adfm.201803329
10.1039/C7CP06187K
10.1002/slct.201901713
10.1126/science.aal1585
10.1021/jacs.6b07014
10.1021/acs.chemrev.7b00335
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
DOI 10.1039/d0cs01482f
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
PubMed

MEDLINE - Academic
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 2581
ExternalDocumentID 33475099
10_1039_D0CS01482F
d0cs01482f
Genre Journal Article
Review
GroupedDBID -
0-7
02
0R
29B
4.4
53G
5GY
70
705
70J
7~J
85S
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABFLS
ABGFH
ABPTK
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
COF
CS3
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3I
JG
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
X
---
-DZ
-~X
0R~
2WC
6J9
70~
AAHBH
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
~02
-JG
NPM
YIN
Z5M
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c436t-d9a9e4e5fd004744a5cfb8f724885e8131ecfb8044a1d59cd75ff45ff1cd3e6c3
ISSN 0306-0012
1460-4744
IngestDate Fri Jul 11 06:07:06 EDT 2025
Fri Jul 11 14:46:29 EDT 2025
Mon Jun 30 06:41:44 EDT 2025
Wed Feb 19 02:29:30 EST 2025
Tue Jul 01 04:18:45 EDT 2025
Thu Apr 24 22:53:38 EDT 2025
Sat Jan 08 03:48:19 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c436t-d9a9e4e5fd004744a5cfb8f724885e8131ecfb8044a1d59cd75ff45ff1cd3e6c3
Notes Dr Haoquan Zheng is currently an associate professor in the School of Chemistry and Chemical Engineering at Shaanxi Normal University. He received his BS (2006) and PhD (2011) in applied chemistry from Shanghai Jiao Tong University under the supervision of Professor Shunai Che. He worked as a postdoctoral fellow in the group of Professor Xiaodong Zou at Stockholm University. He moved to his current position in July 2016. His research interest lies in the development of hierarchical porous materials with novel structures and functions for drug delivery and heterogeneous catalysis.
Dr Hong-Yan Wang received her PhD in organic chemistry in Chinese Academy of Sciences in 2011. In 2014, she joined the School of Chemistry and Chemical Engineering at Shaanxi Normal University as an associate professor. Her research interest concerns artificial photosynthesis using supramolecular systems, coordination compounds, and semiconductors. Now, she is working on the design of a photochemical device for water splitting, CO
2
reduction with Professor Rong Xu, he joined the School of Chemistry and Chemical Engineering at Shaanxi Normal University in 2014. His current research focuses on catalytic reactions of water splitting.
reduction and organic synthesis.
Prof. Wei Zhang received his BS (2007) in chemistry from Peking University in Beijing, China and PhD degree (2012) from Nanyang Technological University in Singapore with Professor Rong Xu. After postdoctoral work in photocatalytic CO
Prof. Rui Cao received his BS (2003) in chemistry from Peking University in Beijing, China and his PhD (2008) from Emory University in Atlanta, Georgia, USA, with Professor Craig L. Hill. He worked as a Postdoctoral Fellow (2008-2009) at Emory University and was the Dreyfus Postdoctoral Fellow (2009-2011) at Massachusetts Institute of Technology with Professor Stephen J. Lippard. In 2011, he became a professor at Renmin University of China, and transferred to Shaanxi Normal University in 2014. His main research interests lie in bioinorganic chemistry and catalysis for energy-related small molecule activation reactions. He served on the Advisory Board of Chemical Society Reviews since 2019.
Dr Zuozhong Liang is currently an associate research fellow in the School of Chemistry and Chemical Engineering at Shaanxi Normal University. He received his BS (2011) from Qufu Normal University and PhD (2016) from Beijing University of Chemical Technology under the supervision of Professor Jian-Feng Chen. In July 2016, he joined the research group of Professor Rui Cao. His research interests focus on the design and development of novel functional nanomaterials for application in renewable-energy-related fields.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1821-9583
0000-0002-1127-9452
0000-0003-3897-0750
0000-0003-3869-4055
0000-0002-6063-9637
PMID 33475099
PQID 2494319583
PQPubID 2047503
PageCount 42
ParticipantIDs proquest_miscellaneous_2524268661
rsc_primary_d0cs01482f
proquest_miscellaneous_2479741349
crossref_citationtrail_10_1039_D0CS01482F
crossref_primary_10_1039_D0CS01482F
pubmed_primary_33475099
proquest_journals_2494319583
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 3
  year: 2021
  text: 20210301
  day: 1
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Li (D0CS01482F-(cit345)/*[position()=1]) 2020; 3
Hijazi (D0CS01482F-(cit193)/*[position()=1]) 2014; 136
Li (D0CS01482F-(cit191)/*[position()=1]) 2019; 29
Weekes (D0CS01482F-(cit249)/*[position()=1]) 2018; 51
Jiao (D0CS01482F-(cit287)/*[position()=1]) 2018; 57
Wang (D0CS01482F-(cit258)/*[position()=1]) 2015; 115
Oldacre (D0CS01482F-(cit394)/*[position()=1]) 2017; 139
Zhang (D0CS01482F-(cit274)/*[position()=1]) 2020; 8
Feng (D0CS01482F-(cit174)/*[position()=1]) 2019; 9
Wang (D0CS01482F-(cit219)/*[position()=1]) 2016; 28
Xiang (D0CS01482F-(cit213)/*[position()=1]) 2014; 53
Hu (D0CS01482F-(cit340)/*[position()=1]) 2017; 56
Lu (D0CS01482F-(cit119)/*[position()=1]) 2020; 59
Reier (D0CS01482F-(cit299)/*[position()=1]) 2012; 2
Yoshikawa (D0CS01482F-(cit11)/*[position()=1]) 2015; 115
Li (D0CS01482F-(cit116)/*[position()=1]) 2018; 57
Han (D0CS01482F-(cit350)/*[position()=1]) 2019; 58
Collman (D0CS01482F-(cit50)/*[position()=1]) 2006
Wang (D0CS01482F-(cit20)/*[position()=1]) 2019; 10
Han (D0CS01482F-(cit214)/*[position()=1]) 2017; 139
Boyd (D0CS01482F-(cit393)/*[position()=1]) 2019; 576
Gotico (D0CS01482F-(cit380)/*[position()=1]) 2020; 59
Wang (D0CS01482F-(cit312)/*[position()=1]) 2020; 579
Zagal (D0CS01482F-(cit279)/*[position()=1]) 2016; 55
Park (D0CS01482F-(cit217)/*[position()=1]) 2020; 59
Abdinejad (D0CS01482F-(cit339)/*[position()=1]) 2020; 5
Gong (D0CS01482F-(cit364)/*[position()=1]) 2020; 142
Chen (D0CS01482F-(cit148)/*[position()=1]) 2017; 7
Chen (D0CS01482F-(cit398)/*[position()=1]) 2020; 4
Segura (D0CS01482F-(cit208)/*[position()=1]) 2016; 45
Ryu (D0CS01482F-(cit232)/*[position()=1]) 2019; 31
Wang (D0CS01482F-(cit223)/*[position()=1]) 2016; 28
Meng (D0CS01482F-(cit114)/*[position()=1]) 2019; 9
Lin (D0CS01482F-(cit188)/*[position()=1]) 2015; 349
Wang (D0CS01482F-(cit367)/*[position()=1]) 2019; 25
Guo (D0CS01482F-(cit87)/*[position()=1]) 2020; 12
Peljo (D0CS01482F-(cit43)/*[position()=1]) 2012; 134
Liu (D0CS01482F-(cit323)/*[position()=1]) 2020; 13
Zhang (D0CS01482F-(cit3)/*[position()=1]) 2017; 117
Suga (D0CS01482F-(cit62)/*[position()=1]) 2015; 517
Zhao (D0CS01482F-(cit132)/*[position()=1]) 2018; 2
Lei (D0CS01482F-(cit21)/*[position()=1]) 2020; 24
Artero (D0CS01482F-(cit26)/*[position()=1]) 2011; 50
Guo (D0CS01482F-(cit267)/*[position()=1]) 2018; 57
Zhao (D0CS01482F-(cit218)/*[position()=1]) 2015; 27
Tsukihara (D0CS01482F-(cit9)/*[position()=1]) 1995; 269
Zhang (D0CS01482F-(cit25)/*[position()=1]) 2019; 219
Kadish (D0CS01482F-(cit382)/*[position()=1]) 2006; 100
Zhang (D0CS01482F-(cit104)/*[position()=1]) 2020; 53
Hou (D0CS01482F-(cit289)/*[position()=1]) 2020; 13
Makiura (D0CS01482F-(cit215)/*[position()=1]) 2010; 9
Jia (D0CS01482F-(cit194)/*[position()=1]) 2016; 3
Sun (D0CS01482F-(cit71)/*[position()=1]) 2017; 53
Zuo (D0CS01482F-(cit286)/*[position()=1]) 2019; 58
Cheng (D0CS01482F-(cit158)/*[position()=1]) 2018; 6
Liu (D0CS01482F-(cit319)/*[position()=1]) 2018; 11
Masa (D0CS01482F-(cit56)/*[position()=1]) 2013; 19
Yang (D0CS01482F-(cit333)/*[position()=1]) 2020; 16
Zhao (D0CS01482F-(cit88)/*[position()=1]) 2020; 26
Kornienko (D0CS01482F-(cit186)/*[position()=1]) 2015; 137
Chang (D0CS01482F-(cit378)/*[position()=1]) 2003; 125
Feng (D0CS01482F-(cit403)/*[position()=1]) 2020; 2
Sun (D0CS01482F-(cit391)/*[position()=1]) 2016; 55
Shen (D0CS01482F-(cit276)/*[position()=1]) 2017; 10
Yang (D0CS01482F-(cit145)/*[position()=1]) 2017; 46
Ross (D0CS01482F-(cit242)/*[position()=1]) 2019; 2
Liu (D0CS01482F-(cit44)/*[position()=1]) 2020; 11
Zou (D0CS01482F-(cit160)/*[position()=1]) 2012; 41
Chen (D0CS01482F-(cit172)/*[position()=1]) 2020
Wang (D0CS01482F-(cit357)/*[position()=1]) 2020; 396
Peng (D0CS01482F-(cit322)/*[position()=1]) 2019; 5
Xu (D0CS01482F-(cit280)/*[position()=1]) 2018; 1
Luo (D0CS01482F-(cit239)/*[position()=1]) 2020; 16
Liang (D0CS01482F-(cit254)/*[position()=1]) 2019; 6
Liang (D0CS01482F-(cit256)/*[position()=1]) 2011; 10
Najafpour (D0CS01482F-(cit1)/*[position()=1]) 2016; 116
Zhang (D0CS01482F-(cit381)/*[position()=1]) 2020; 142
Takaishi (D0CS01482F-(cit388)/*[position()=1]) 2009; 48
Yamada (D0CS01482F-(cit37)/*[position()=1]) 2010; 46
Chen (D0CS01482F-(cit175)/*[position()=1]) 2010; 114
Poulos (D0CS01482F-(cit6)/*[position()=1]) 2014; 114
Shen (D0CS01482F-(cit102)/*[position()=1]) 2016; 120
Beyzavi (D0CS01482F-(cit162)/*[position()=1]) 2015; 137
Zhou (D0CS01482F-(cit163)/*[position()=1]) 2020; 142
Xu (D0CS01482F-(cit327)/*[position()=1]) 2014; 39
Zeb Gul Sial (D0CS01482F-(cit222)/*[position()=1]) 2018; 47
Dey (D0CS01482F-(cit105)/*[position()=1]) 2017; 1
Chen (D0CS01482F-(cit404)/*[position()=1]) 2017; 139
Yaghi (D0CS01482F-(cit120)/*[position()=1]) 1995; 378
Li (D0CS01482F-(cit231)/*[position()=1]) 2017; 2
Collman (D0CS01482F-(cit12)/*[position()=1]) 2007; 315
Wurster (D0CS01482F-(cit316)/*[position()=1]) 2016; 138
Abrahams (D0CS01482F-(cit154)/*[position()=1]) 1991; 113
Grimaud (D0CS01482F-(cit307)/*[position()=1]) 2017; 9
Zhong (D0CS01482F-(cit255)/*[position()=1]) 2020; 7
Mittra (D0CS01482F-(cit30)/*[position()=1]) 2013; 52
Kong (D0CS01482F-(cit142)/*[position()=1]) 2020; 49
Lei (D0CS01482F-(cit111)/*[position()=1]) 2016; 6
Liu (D0CS01482F-(cit199)/*[position()=1]) 2019; 43
Froehlich (D0CS01482F-(cit98)/*[position()=1]) 2012; 51
Auwärter (D0CS01482F-(cit2)/*[position()=1]) 2015; 7
Wang (D0CS01482F-(cit314)/*[position()=1]) 2020; 181
Yang (D0CS01482F-(cit356)/*[position()=1]) 2020; 59
Li (D0CS01482F-(cit106)/*[position()=1]) 2017; 10
Miner (D0CS01482F-(cit390)/*[position()=1]) 2016; 7
Sun (D0CS01482F-(cit39)/*[position()=1]) 2014; 43
Xu (D0CS01482F-(cit69)/*[position()=1]) 2017; 19
Zahran (D0CS01482F-(cit89)/*[position()=1]) 2016; 6
Cheung (D0CS01482F-(cit203)/*[position()=1]) 2019; 31
Usov (D0CS01482F-(cit184)/*[position()=1]) 2017; 9
Feng (D0CS01482F-(cit179)/*[position()=1]) 2014; 136
Liang (D0CS01482F-(cit303)/*[position()=1]) 2018; 9
Zhang (D0CS01482F-(cit171)/*[position()=1]) 2016; 55
Nakazono (D0CS01482F-(cit309)/*[position()=1]) 2015; 21
Qin (D0CS01482F-(cit297)/*[position()=1]) 2021; 53
Diercks (D0CS01482F-(cit189)/*[position()=1]) 2018; 140
Jiao (D0CS01482F-(cit149)/*[position()=1]) 2018; 30
Sen (D0CS01482F-(cit82)/*[position()=1]) 2019; 48
Cantillo (D0CS01482F-(cit281)/*[position()=1]) 2016; 4
Feng (D0CS01482F-(cit360)/*[position()=1]) 2020; 270
Smith (D0CS01482F-(cit369)/*[position()=1]) 2018; 57
Cai (D0CS01482F-(cit241)/*[position()=1]) 2017; 4
Davari (D0CS01482F-(cit321)/*[position()=1]) 2018; 2
Huang (D0CS01482F-(cit192)/*[position()=1]) 2019; 7
Park (D0CS01482F-(cit23)/*[position()=1]) 2020; 407
Stock (D0CS01482F-(cit123)/*[position()=1]) 2012; 112
Zheng (D0CS01482F-(cit152)/*[position()=1]) 2016; 138
Adam (D0CS01482F-(cit10)/*[position()=1]) 2018; 118
Ma (D0CS01482F-(cit283)/*[position()=1]) 2015; 52
Jahan (D0CS01482F-(cit268)/*[position()=1]) 2012; 134
Rasheed (D0CS01482F-(cit146)/*[position()=1]) 2020; 25
Wu (D0CS01482F-(cit73)/*[position()=1]) 2019; 575
Cai (D0CS01482F-(cit263)/*[position()=1]) 2016; 3
Costentin (D0CS01482F-(cit76)/*[position()=1]) 2013; 42
Brezny (D0CS01482F-(cit32)/*[position()=1]) 2020; 142
Chang (D0CS01482F-(cit42)/*[position()=1]) 2000
Dai (D0CS01482F-(cit198)/*[position()=1]) 2016; 45
Li (D0CS01482F-(cit54)/*[position()=1]) 2010; 132
Huang (D0CS01482F-(cit375)/*[position()=1]) 2017; 139
Fateeva (D0CS01482F-(cit185)/*[position()=1]) 2012; 51
Xu (D0CS01482F-(cit392)/*[position()=1]) 2013; 135
Zhang (D0CS01482F-(cit293)/*[position()=1]) 2020; 32
Fang (D0CS01482F-(cit49)/*[position()=1]) 2017; 117
Jin (D0CS01482F-(cit251)/*[position()=1]) 2018; 118
Huang (D0CS01482F-(cit311)/*[position()=1]) 2018; 8
Xu (D0CS01482F-(cit118)/*[position()=1]) 2019; 55
Kirchon (D0CS01482F-(cit121)/*[position()=1]) 2018; 47
Wang (D0CS01482F-(cit225)/*[position()=1]) 2019; 31
Zhong (D0CS01482F-(cit236)/*[position()=1]) 2019; 2
Choi (D0CS01482F-(cit343)/*[position()=1]) 2018; 8
Zhong (D0CS01482F-(cit298)/*[position()=1]) 2019; 58
Lei (D0CS01482F-(cit22)/*[position()=1]) 2015; 5
Feng (D0CS01482F-(cit178)/*[position()=1]) 2013; 135
Li (D0CS01482F-(cit240)/*[position()=1]) 2013; 4
Fukuzumi (D0CS01482F-(cit228)/*[position()=1]) 2012; 82
Zhao (D0CS01482F-(cit266)/*[position()=1]) 2019; 30
Fang (D0CS01482F-(cit363)/*[position()=1]) 2020; 142
McGuire Jr. (D0CS01482F-(cit41)/*[position()=1]) 2010; 1
Fukuzumi (D0CS01482F-(cit334)/*[position()=1]) 2018; 9
Li (D0CS01482F-(cit107)/*[position()=1]) 2019; 12
Costentin (D0CS01482F-(cit81)/*[position()=1]) 2015; 48
Chen (D0CS01482F-(cit291)/*[position()=1]) 2018; 2
Oldacre (D0CS01482F-(cit395)/*[position()=1]) 2018; 24
Zhou (D0CS01482F-(cit147)/*[position()=1]) 2017; 46
Guo (D0CS01482F-(cit344)/*[position()=1]) 2019; 141
Meunier (D0CS01482F-(cit7)/*[position()=1]) 2004; 104
Liberman (D0CS01482F-(cit377)/*[position()=1]) 2020; 142
Li (D0CS01482F-(cit238)/*[position()=1]) 2014; 43
Gewirth (D0CS01482F-(cit250)/*[position()=1]) 2018; 118
Choi (D0CS01482F-(cit338)/*[position()=1]) 2019; 12
Li (D0CS01482F-(cit245)/*[position()=1]) 2018; 1
Lin (D0CS01482F-(cit294)/*[position()=1]) 2015; 27
Handoko (D0CS01482F-(cit401)/*[position()=1]) 2018; 1
Wannakao (D0CS01482F-(cit379)/*[position()=1]) 2017; 56
Huang (D0CS01482F-(cit284)/*[position()=1]) 2020; 10
Dogutan (D0CS01482F-(cit70)/*[position()=1]) 2011; 133
Chng (D0CS01482F-(cit27)/*[position()=1]) 2003; 5
Margarit (D0CS01482F-(cit85)/*[position()=1]) 2019; 38
Wu (D0CS01482F-(cit212)/*[position()=1]) 2014; 26
Wan (D0CS01482F-(cit262)/*[position()=1]) 2020; 10
Wu (D0CS01482F-(cit130)/*[position()=1]) 2017; 3
Maurin (D0CS01482F-(cit336)/*[position()=1]) 2016; 138
Gonglach (D0CS01482F-(cit337)/*[position()=1]) 2019; 10
Xie (D0CS01482F-(cit112)/*[position()=1]) 2019; 58
Tei (D0CS01482F-(cit57)/*[position()=1]) 2017
Hu (D0CS01482F-(cit210)/*[position()=1]) 2016; 52
Passard (D0CS01482F-(cit46)/*[position()=1]) 2018; 8
Cao (D0CS01482F-(cit229)/*[position()=1]) 2012; 2
Wang (D0CS01482F-(cit261)/*[position()=1]) 2019; 2
Lu (D0CS01482F-(cit349)/*[position()=1]) 2019; 29
Song (D0CS01482F-(cit131)/*[position()=1]) 2019; 6
Jiao (D0CS01482F-(cit358)/*[position()=1]) 2020; 59
Tang (D0CS01482F-(cit227)/*[position()=1]) 2020; 59
Hao (D0CS01482F-(cit165)/*[position()=1]) 2019; 31
Zhu (D0CS01482F-(cit372)/*[position()=
References_xml – volume: 46
  start-page: 4774
  year: 2017
  ident: D0CS01482F-(cit145)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00724D
– volume: 59
  start-page: 5326
  year: 2020
  ident: D0CS01482F-(cit204)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201915537
– volume: 181
  start-page: 108568
  year: 2020
  ident: D0CS01482F-(cit314)/*[position()=1]
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2020.108568
– volume: 4
  start-page: 15
  year: 2020
  ident: D0CS01482F-(cit257)/*[position()=1]
  publication-title: Sustainable Energy Fuels
  doi: 10.1039/C9SE00460B
– volume: 57
  start-page: 3493
  year: 2018
  ident: D0CS01482F-(cit170)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201800817
– volume: 137
  start-page: 13624
  year: 2015
  ident: D0CS01482F-(cit162)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08440
– volume: 3
  start-page: 478
  year: 2020
  ident: D0CS01482F-(cit243)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-0450-0
– volume: 349
  start-page: 1208
  year: 2015
  ident: D0CS01482F-(cit188)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aac8343
– volume: 118
  start-page: 4631
  year: 2018
  ident: D0CS01482F-(cit74)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00459
– volume: 5
  start-page: 5145
  year: 2015
  ident: D0CS01482F-(cit22)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00666
– volume: 4
  start-page: 1700194
  year: 2017
  ident: D0CS01482F-(cit365)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700194
– volume: 341
  start-page: 1230444
  year: 2013
  ident: D0CS01482F-(cit124)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1230444
– volume: 2
  start-page: 1242
  year: 2018
  ident: D0CS01482F-(cit291)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2018.06.019
– volume: 47
  start-page: 6175
  year: 2018
  ident: D0CS01482F-(cit222)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00113H
– volume: 29
  start-page: 1604685
  year: 2017
  ident: D0CS01482F-(cit235)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604685
– start-page: 1355
  year: 2000
  ident: D0CS01482F-(cit42)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b001620i
– volume: 142
  start-page: 12382
  year: 2020
  ident: D0CS01482F-(cit402)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c04758
– volume: 49
  start-page: 3565
  year: 2020
  ident: D0CS01482F-(cit129)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00017E
– volume: 45
  start-page: 61
  year: 2016
  ident: D0CS01482F-(cit198)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT04025F
– volume: 53
  start-page: 6496
  year: 2017
  ident: D0CS01482F-(cit187)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC02113E
– volume: 1
  start-page: 411
  year: 2010
  ident: D0CS01482F-(cit41)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/c0sc00281j
– volume: 53
  start-page: 255
  year: 2020
  ident: D0CS01482F-(cit104)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00496
– volume: 139
  start-page: 8705
  year: 2017
  ident: D0CS01482F-(cit209)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04141
– volume: 51
  start-page: 910
  year: 2018
  ident: D0CS01482F-(cit249)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00010
– volume: 56
  start-page: 6468
  year: 2017
  ident: D0CS01482F-(cit340)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201701104
– volume: 2
  start-page: 578
  year: 2019
  ident: D0CS01482F-(cit261)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0304-9
– volume: 114
  start-page: 8633
  year: 2010
  ident: D0CS01482F-(cit175)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp101011f
– volume: 46
  start-page: 6088
  year: 2017
  ident: D0CS01482F-(cit15)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00248C
– volume: 48
  start-page: 7631
  year: 2012
  ident: D0CS01482F-(cit31)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc32832a
– volume: 9
  start-page: 565
  year: 2010
  ident: D0CS01482F-(cit215)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2769
– volume: 59
  start-page: 16098
  year: 2020
  ident: D0CS01482F-(cit100)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202005242
– volume: 38
  start-page: 1219
  year: 2019
  ident: D0CS01482F-(cit85)/*[position()=1]
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.8b00334
– volume: 10
  start-page: 2199
  year: 2019
  ident: D0CS01482F-(cit355)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC04344B
– volume: 5
  start-page: 6302
  year: 2015
  ident: D0CS01482F-(cit181)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01767
– volume: 1
  start-page: 384
  year: 2019
  ident: D0CS01482F-(cit361)/*[position()=1]
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.019.20190011
– volume: 139
  start-page: 11760
  year: 2017
  ident: D0CS01482F-(cit115)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04122
– volume: 141
  start-page: 19560
  year: 2019
  ident: D0CS01482F-(cit195)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b10787
– volume: 54
  start-page: 7519
  year: 2018
  ident: D0CS01482F-(cit275)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC02646G
– volume: 58
  start-page: 12711
  year: 2019
  ident: D0CS01482F-(cit350)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201907399
– volume: 378
  start-page: 703
  year: 1995
  ident: D0CS01482F-(cit120)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/378703a0
– volume: 100
  start-page: 858
  year: 2006
  ident: D0CS01482F-(cit382)/*[position()=1]
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2006.01.010
– volume: 140
  start-page: 1116
  year: 2018
  ident: D0CS01482F-(cit189)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11940
– volume: 3
  start-page: eaap9252
  year: 2017
  ident: D0CS01482F-(cit130)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aap9252
– volume: 158
  start-page: B139
  year: 2011
  ident: D0CS01482F-(cit282)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3521317
– volume: 55
  start-page: 12647
  year: 2019
  ident: D0CS01482F-(cit118)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC06916J
– volume: 28
  start-page: 4375
  year: 2016
  ident: D0CS01482F-(cit306)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b01370
– volume: 59
  start-page: 8941
  year: 2020
  ident: D0CS01482F-(cit17)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202002311
– volume: 57
  start-page: 9684
  year: 2018
  ident: D0CS01482F-(cit369)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201803873
– volume: 300
  start-page: 1127
  year: 2003
  ident: D0CS01482F-(cit138)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1083440
– volume: 136
  start-page: 6348
  year: 2014
  ident: D0CS01482F-(cit193)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja500984k
– volume: 37
  start-page: 3397
  year: 1998
  ident: D0CS01482F-(cit14)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/(SICI)1521-3773(19981231)37:24<3397::AID-ANIE3397>3.0.CO;2-N
– volume: 52
  start-page: 53
  year: 2015
  ident: D0CS01482F-(cit283)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2015.01.021
– volume: 4
  start-page: 1688
  year: 2020
  ident: D0CS01482F-(cit398)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2020.07.009
– volume: 132
  start-page: 17056
  year: 2010
  ident: D0CS01482F-(cit54)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja106217u
– volume: 118
  start-page: 10840
  year: 2018
  ident: D0CS01482F-(cit10)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00074
– volume: 10
  start-page: 9692
  year: 2019
  ident: D0CS01482F-(cit83)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC02711D
– volume: 365
  start-page: 367
  year: 2019
  ident: D0CS01482F-(cit347)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aax4608
– volume: 137
  start-page: 5461
  year: 2015
  ident: D0CS01482F-(cit18)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b00914
– volume: 120
  start-page: 15714
  year: 2016
  ident: D0CS01482F-(cit102)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b10763
– volume: 7
  start-page: 105
  year: 2015
  ident: D0CS01482F-(cit2)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2159
– volume: 2
  start-page: 1765
  year: 2012
  ident: D0CS01482F-(cit299)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/cs3003098
– volume: 7
  start-page: 13461
  year: 2016
  ident: D0CS01482F-(cit207)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13461
– volume: 4
  start-page: 1805
  year: 2013
  ident: D0CS01482F-(cit240)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2812
– volume: 10
  start-page: 2308
  year: 2019
  ident: D0CS01482F-(cit20)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC05247F
– volume: 51
  start-page: 8890
  year: 2012
  ident: D0CS01482F-(cit51)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic300886s
– volume: 142
  start-page: 14548
  year: 2020
  ident: D0CS01482F-(cit351)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05909
– volume: 53
  start-page: 6195
  year: 2017
  ident: D0CS01482F-(cit71)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC02400B
– volume: 142
  start-page: 12515
  year: 2020
  ident: D0CS01482F-(cit363)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05530
– volume: 6
  start-page: 6429
  year: 2016
  ident: D0CS01482F-(cit111)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01579
– volume: 4
  start-page: 3848
  year: 2020
  ident: D0CS01482F-(cit278)/*[position()=1]
  publication-title: Sustainable Energy Fuels
  doi: 10.1039/D0SE00271B
– volume: 8
  start-page: 1801280
  year: 2018
  ident: D0CS01482F-(cit343)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801280
– volume: 1
  start-page: 0087
  year: 2017
  ident: D0CS01482F-(cit373)/*[position()=1]
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-017-0087
– volume: 1
  start-page: 565
  year: 2019
  ident: D0CS01482F-(cit230)/*[position()=1]
  publication-title: Matter
  doi: 10.1016/j.matt.2019.05.008
– volume: 51
  start-page: 10307
  year: 2012
  ident: D0CS01482F-(cit180)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201204475
– volume: 574
  start-page: 81
  year: 2019
  ident: D0CS01482F-(cit330)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-019-1603-7
– volume: 141
  start-page: 8315
  year: 2019
  ident: D0CS01482F-(cit35)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b02640
– volume: 2
  start-page: 52
  year: 2017
  ident: D0CS01482F-(cit136)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2016.12.002
– volume: 141
  start-page: 7665
  year: 2019
  ident: D0CS01482F-(cit310)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b01229
– volume: 49
  start-page: 2378
  year: 2020
  ident: D0CS01482F-(cit142)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00880B
– volume: 30
  start-page: 911
  year: 2019
  ident: D0CS01482F-(cit266)/*[position()=1]
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2019.03.026
– volume: 8
  start-page: 14675
  year: 2017
  ident: D0CS01482F-(cit368)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14675
– volume: 18
  start-page: 345
  year: 2016
  ident: D0CS01482F-(cit176)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C5CE02106E
– ident: D0CS01482F-(cit64)/*[position()=1]
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(20)63681-6
– volume: 54
  start-page: 3465
  year: 2015
  ident: D0CS01482F-(cit359)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201410738
– volume: 114
  start-page: 11863
  year: 2014
  ident: D0CS01482F-(cit16)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr400572f
– volume: 1
  start-page: 339
  year: 2018
  ident: D0CS01482F-(cit280)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0063-z
– volume: 142
  start-page: 14848
  year: 2020
  ident: D0CS01482F-(cit163)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c07257
– volume: 7
  start-page: 1143
  year: 2017
  ident: D0CS01482F-(cit400)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01815
– volume: 26
  start-page: 4007
  year: 2020
  ident: D0CS01482F-(cit88)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201903064
– volume: 51
  start-page: 2730
  year: 2018
  ident: D0CS01482F-(cit396)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00302
– volume: 137
  start-page: 13535
  year: 2015
  ident: D0CS01482F-(cit36)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06834
– volume: 3
  start-page: 4954
  year: 2015
  ident: D0CS01482F-(cit264)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06231K
– volume: 58
  start-page: 18883
  year: 2019
  ident: D0CS01482F-(cit112)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201911441
– volume: 373
  start-page: 22
  year: 2018
  ident: D0CS01482F-(cit140)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.09.001
– volume: 55
  start-page: 5457
  year: 2016
  ident: D0CS01482F-(cit19)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201510001
– volume: 16
  start-page: 1883
  year: 2014
  ident: D0CS01482F-(cit68)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C3CP54361G
– volume: 59
  start-page: 4902
  year: 2020
  ident: D0CS01482F-(cit295)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201916131
– volume: 7
  start-page: 7726
  year: 2017
  ident: D0CS01482F-(cit389)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02647
– volume: 9
  start-page: 3895
  year: 2019
  ident: D0CS01482F-(cit84)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00529
– volume: 16
  start-page: 2001171
  year: 2020
  ident: D0CS01482F-(cit239)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.202001171
– volume: 43
  start-page: 10809
  year: 2014
  ident: D0CS01482F-(cit39)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C4DT01072H
– volume: 10
  start-page: 5979
  year: 2020
  ident: D0CS01482F-(cit262)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c01085
– volume: 24
  start-page: 1361
  year: 2020
  ident: D0CS01482F-(cit21)/*[position()=1]
  publication-title: J. Porphyrins phthalocyanines
  doi: 10.1142/S1088424620500157
– volume: 15
  start-page: 1970
  year: 2020
  ident: D0CS01482F-(cit326)/*[position()=1]
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.202000438
– volume: 12
  start-page: 747
  year: 2019
  ident: D0CS01482F-(cit338)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE03403F
– volume: 142
  start-page: 13426
  year: 2020
  ident: D0CS01482F-(cit381)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c03861
– volume: 21
  start-page: 6723
  year: 2015
  ident: D0CS01482F-(cit309)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201500716
– volume: 58
  start-page: 6595
  year: 2019
  ident: D0CS01482F-(cit341)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201900499
– volume: 1
  start-page: 4662
  year: 2018
  ident: D0CS01482F-(cit182)/*[position()=1]
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00797
– volume: 1
  start-page: 0098
  year: 2017
  ident: D0CS01482F-(cit105)/*[position()=1]
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-017-0098
– volume: 7
  start-page: 5575
  year: 2019
  ident: D0CS01482F-(cit192)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00040B
– volume: 31
  start-page: 1804784
  year: 2019
  ident: D0CS01482F-(cit232)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804784
– volume: 13
  start-page: 1658
  year: 2020
  ident: D0CS01482F-(cit289)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE04040D
– volume: 5
  start-page: 979
  year: 2020
  ident: D0CS01482F-(cit339)/*[position()=1]
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201904580
– volume: 48
  start-page: 2216
  year: 2019
  ident: D0CS01482F-(cit103)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00897C
– volume: 3
  start-page: 883
  year: 2018
  ident: D0CS01482F-(cit288)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00245
– volume: 270
  start-page: 118908
  year: 2020
  ident: D0CS01482F-(cit360)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.118908
– volume: 2
  start-page: 1330
  year: 2019
  ident: D0CS01482F-(cit90)/*[position()=1]
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b01900
– volume: 5
  start-page: 3242
  year: 2014
  ident: D0CS01482F-(cit371)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4242
– volume: 396
  start-page: 125255
  year: 2020
  ident: D0CS01482F-(cit357)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125255
– volume: 9
  start-page: 4551
  year: 2019
  ident: D0CS01482F-(cit114)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00213
– volume: 134
  start-page: 6707
  year: 2012
  ident: D0CS01482F-(cit268)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211433h
– volume: 27
  start-page: 3431
  year: 2015
  ident: D0CS01482F-(cit294)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500727
– volume: 2
  start-page: 1370
  year: 2017
  ident: D0CS01482F-(cit231)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00119
– volume: 46
  start-page: 6497
  year: 2017
  ident: D0CS01482F-(cit4)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT00823F
– volume: 59
  start-page: 22451
  year: 2020
  ident: D0CS01482F-(cit380)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202010859
– volume: 47
  start-page: 172
  year: 2018
  ident: D0CS01482F-(cit253)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.02.015
– volume: 2
  start-page: 231
  year: 2019
  ident: D0CS01482F-(cit271)/*[position()=1]
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-019-00031-9
– volume: 43
  start-page: 5468
  year: 2014
  ident: D0CS01482F-(cit122)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60472A
– volume: 141
  start-page: 17431
  year: 2019
  ident: D0CS01482F-(cit405)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b09502
– volume: 2
  start-page: 2235
  year: 2018
  ident: D0CS01482F-(cit132)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2018.09.019
– volume: 45
  start-page: 517
  year: 2016
  ident: D0CS01482F-(cit277)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00670H
– volume: 575
  start-page: 639
  year: 2019
  ident: D0CS01482F-(cit73)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-019-1760-8
– volume: 12
  start-page: 1591
  year: 2020
  ident: D0CS01482F-(cit87)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201902034
– volume: 55
  start-page: 14310
  year: 2016
  ident: D0CS01482F-(cit171)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201608597
– volume: 57
  start-page: 12567
  year: 2018
  ident: D0CS01482F-(cit267)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201808226
– volume: 19
  start-page: 266
  year: 2020
  ident: D0CS01482F-(cit331)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0610-2
– volume: 19
  start-page: 92
  year: 2015
  ident: D0CS01482F-(cit13)/*[position()=1]
  publication-title: J. Porphyrins phthalocyanines
  doi: 10.1142/S1088424615300049
– volume: 407
  start-page: 213157
  year: 2020
  ident: D0CS01482F-(cit23)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.213157
– volume: 53
  start-page: 2433
  year: 2014
  ident: D0CS01482F-(cit213)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201308896
– start-page: 4815
  year: 2019
  ident: D0CS01482F-(cit168)/*[position()=1]
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201900940
– volume: 52
  start-page: 5864
  year: 2016
  ident: D0CS01482F-(cit210)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC00982D
– volume: 27
  start-page: 4586
  year: 2015
  ident: D0CS01482F-(cit315)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00882
– volume: 59
  start-page: 20589
  year: 2020
  ident: D0CS01482F-(cit358)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202008787
– volume: 2
  start-page: 198
  year: 2019
  ident: D0CS01482F-(cit244)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0235-5
– volume: 52
  start-page: 12084
  year: 2016
  ident: D0CS01482F-(cit342)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC05430G
– volume: 48
  start-page: 5965
  year: 2019
  ident: D0CS01482F-(cit82)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT03850C
– volume: 57
  start-page: 13187
  year: 2018
  ident: D0CS01482F-(cit273)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201807854
– volume: 6
  start-page: 20254
  year: 2018
  ident: D0CS01482F-(cit158)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA06785F
– volume: 41
  start-page: 3879
  year: 2012
  ident: D0CS01482F-(cit160)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/c2dt11989g
– volume: 115
  start-page: 9511
  year: 2011
  ident: D0CS01482F-(cit52)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp101036j
– volume: 32
  start-page: 1904037
  year: 2020
  ident: D0CS01482F-(cit293)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904037
– volume: 8
  start-page: 40054
  year: 2018
  ident: D0CS01482F-(cit311)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C8RA08338J
– volume: 21
  start-page: 1348
  year: 2016
  ident: D0CS01482F-(cit166)/*[position()=1]
  publication-title: Molecules
  doi: 10.3390/molecules21101348
– volume: 2
  start-page: 648
  year: 2019
  ident: D0CS01482F-(cit242)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0306-7
– volume: 8
  start-page: 8671
  year: 2018
  ident: D0CS01482F-(cit46)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01944
– volume: 49
  start-page: 6325
  year: 2013
  ident: D0CS01482F-(cit59)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc43031f
– volume: 114
  start-page: 10174
  year: 2010
  ident: D0CS01482F-(cit101)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp1012335
– volume: 142
  start-page: 4108
  year: 2020
  ident: D0CS01482F-(cit32)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13654
– volume: 46
  start-page: 337
  year: 2017
  ident: D0CS01482F-(cit301)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00328A
– volume: 140
  start-page: 9444
  year: 2018
  ident: D0CS01482F-(cit28)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02983
– volume: 59
  start-page: 8218
  year: 2020
  ident: D0CS01482F-(cit217)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201916595
– volume: 9
  start-page: 4320
  year: 2019
  ident: D0CS01482F-(cit48)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00310
– volume: 115
  start-page: 3433
  year: 2015
  ident: D0CS01482F-(cit258)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr500519c
– volume: 10
  start-page: 6332
  year: 2020
  ident: D0CS01482F-(cit91)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c00559
– volume: 10
  start-page: 1449
  year: 2017
  ident: D0CS01482F-(cit276)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1400-7
– volume: 26
  start-page: 1450
  year: 2014
  ident: D0CS01482F-(cit212)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304147
– volume: 31
  start-page: 1805126
  year: 2019
  ident: D0CS01482F-(cit225)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805126
– volume: 49
  start-page: 2381
  year: 2020
  ident: D0CS01482F-(cit77)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT04709C
– volume: 2
  start-page: 100029
  year: 2020
  ident: D0CS01482F-(cit387)/*[position()=1]
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2020.100029
– volume: 343
  start-page: 66
  year: 2014
  ident: D0CS01482F-(cit386)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1246738
– volume: 369
  start-page: 727
  year: 1994
  ident: D0CS01482F-(cit159)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/369727a0
– volume: 9
  start-page: 1900090
  year: 2019
  ident: D0CS01482F-(cit78)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900090
– volume: 31
  start-page: 1806599
  year: 2019
  ident: D0CS01482F-(cit167)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806599
– volume: 49
  start-page: 2215
  year: 2020
  ident: D0CS01482F-(cit300)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00869A
– volume: 142
  start-page: 15386
  year: 2020
  ident: D0CS01482F-(cit201)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c06329
– volume: 49
  start-page: 4839
  year: 2011
  ident: D0CS01482F-(cit53)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.07.004
– volume: 38
  start-page: 283
  year: 2005
  ident: D0CS01482F-(cit156)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar040173j
– volume: 47
  start-page: 8611
  year: 2018
  ident: D0CS01482F-(cit121)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00688A
– volume: 56
  start-page: 7200
  year: 2017
  ident: D0CS01482F-(cit379)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b00839
– volume: 116
  start-page: 3594
  year: 2016
  ident: D0CS01482F-(cit259)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00462
– volume: 13
  start-page: 374
  year: 2020
  ident: D0CS01482F-(cit247)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03660A
– volume: 10
  start-page: 6579
  year: 2020
  ident: D0CS01482F-(cit284)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c01459
– volume: 59
  start-page: 15844
  year: 2020
  ident: D0CS01482F-(cit108)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202003836
– volume: 140
  start-page: 16544
  year: 2018
  ident: D0CS01482F-(cit161)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08088
– volume: 6
  start-page: 1801410
  year: 2019
  ident: D0CS01482F-(cit131)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801410
– volume: 53
  start-page: 1056
  year: 2020
  ident: D0CS01482F-(cit34)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00044
– volume: 2
  start-page: 1308
  year: 2017
  ident: D0CS01482F-(cit133)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00267
– volume: 52
  start-page: 14317
  year: 2013
  ident: D0CS01482F-(cit30)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic402297f
– volume: 10
  start-page: 3864
  year: 2019
  ident: D0CS01482F-(cit337)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11868-5
– volume: 31
  start-page: 8100
  year: 2019
  ident: D0CS01482F-(cit165)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b02718
– volume: 64
  start-page: 1158
  year: 2019
  ident: D0CS01482F-(cit376)/*[position()=1]
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.07.003
– volume: 29
  start-page: 1806884
  year: 2019
  ident: D0CS01482F-(cit349)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806884
– volume: 59
  start-page: 6301
  year: 2020
  ident: D0CS01482F-(cit366)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c00407
– volume: 219
  start-page: 617
  year: 2019
  ident: D0CS01482F-(cit25)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.12.024
– volume: 13
  start-page: 1529
  year: 2020
  ident: D0CS01482F-(cit323)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201903071
– volume: 28
  start-page: 10117
  year: 2016
  ident: D0CS01482F-(cit223)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601909
– volume: 25
  start-page: 1598
  year: 2020
  ident: D0CS01482F-(cit146)/*[position()=1]
  publication-title: Molecules
  doi: 10.3390/molecules25071598
– volume: 48
  start-page: 9048
  year: 2009
  ident: D0CS01482F-(cit388)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic802117q
– volume: 135
  start-page: 862
  year: 2013
  ident: D0CS01482F-(cit362)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja310596a
– volume: 118
  start-page: 2340
  year: 2018
  ident: D0CS01482F-(cit45)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00542
– volume: 53
  start-page: 3624
  year: 2018
  ident: D0CS01482F-(cit200)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-017-1768-0
– volume: 31
  start-page: 1804799
  year: 2019
  ident: D0CS01482F-(cit221)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804799
– volume: 137
  start-page: 14129
  year: 2015
  ident: D0CS01482F-(cit186)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08212
– volume: 16
  start-page: 11224
  year: 2014
  ident: D0CS01482F-(cit58)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP00523F
– volume: 30
  start-page: 1705332
  year: 2018
  ident: D0CS01482F-(cit260)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705332
– volume: 6
  start-page: 24533
  year: 2016
  ident: D0CS01482F-(cit89)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep24533
– volume: 19
  start-page: 9644
  year: 2013
  ident: D0CS01482F-(cit56)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201203846
– volume: 55
  start-page: 3566
  year: 2016
  ident: D0CS01482F-(cit391)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201506219
– volume: 3
  start-page: 2315
  year: 2012
  ident: D0CS01482F-(cit72)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz3008535
– volume: 171
  start-page: 81
  year: 2015
  ident: D0CS01482F-(cit55)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.05.004
– volume: 3
  start-page: 853
  year: 2017
  ident: D0CS01482F-(cit397)/*[position()=1]
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00180
– volume: 43
  start-page: 5841
  year: 2014
  ident: D0CS01482F-(cit117)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00001C
– volume: 271
  start-page: 526
  year: 2018
  ident: D0CS01482F-(cit304)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.03.186
– volume: 10
  start-page: 780
  year: 2011
  ident: D0CS01482F-(cit256)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3087
– volume: 16
  start-page: 2001847
  year: 2020
  ident: D0CS01482F-(cit333)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.202001847
– volume: 9
  start-page: 2257
  year: 2016
  ident: D0CS01482F-(cit320)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01109H
– volume: 50
  start-page: 7238
  year: 2011
  ident: D0CS01482F-(cit26)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201007987
– volume: 138
  start-page: 8076
  year: 2016
  ident: D0CS01482F-(cit96)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04746
– volume: 31
  start-page: 1908
  year: 2019
  ident: D0CS01482F-(cit203)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b04370
– start-page: 1137
  year: 1977
  ident: D0CS01482F-(cit95)/*[position()=1]
  publication-title: Chem. Lett.
  doi: 10.1246/cl.1977.1137
– volume: 7
  start-page: 1107
  year: 2020
  ident: D0CS01482F-(cit255)/*[position()=1]
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201902085
– volume: 11
  start-page: 1736
  year: 2018
  ident: D0CS01482F-(cit319)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00611C
– volume: 9
  start-page: 6017
  year: 2018
  ident: D0CS01482F-(cit334)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC02220H
– volume: 486
  start-page: 43
  year: 2012
  ident: D0CS01482F-(cit224)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature11115
– volume: 43
  start-page: 16907
  year: 2019
  ident: D0CS01482F-(cit199)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C9NJ04017J
– volume: 4
  start-page: 945
  year: 2017
  ident: D0CS01482F-(cit241)/*[position()=1]
  publication-title: Mater. Horiz.
  doi: 10.1039/C7MH00358G
– volume: 8
  start-page: 9536
  year: 2020
  ident: D0CS01482F-(cit274)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA00962H
– volume: 4
  start-page: 16818
  year: 2016
  ident: D0CS01482F-(cit183)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA05877A
– volume: 141
  start-page: 17875
  year: 2019
  ident: D0CS01482F-(cit344)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b09227
– volume: 138
  start-page: 3623
  year: 2016
  ident: D0CS01482F-(cit316)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10484
– volume: 51
  start-page: 6443
  year: 2012
  ident: D0CS01482F-(cit177)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic300825s
– volume: 19
  start-page: 9755
  year: 2017
  ident: D0CS01482F-(cit69)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP08495H
– volume: 53
  start-page: 77
  year: 2021
  ident: D0CS01482F-(cit297)/*[position()=1]
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.05.015
– volume: 136
  start-page: 16132
  year: 2014
  ident: D0CS01482F-(cit372)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5095099
– volume: 136
  start-page: 12544
  year: 2014
  ident: D0CS01482F-(cit33)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja505667t
– volume: 6
  start-page: 1188
  year: 2018
  ident: D0CS01482F-(cit318)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA07978H
– volume: 136
  start-page: 17714
  year: 2014
  ident: D0CS01482F-(cit179)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja510525s
– volume: 138
  start-page: 2492
  year: 2016
  ident: D0CS01482F-(cit336)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b12652
– volume: 517
  start-page: 99
  year: 2015
  ident: D0CS01482F-(cit62)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature13991
– volume: 139
  start-page: 17269
  year: 2017
  ident: D0CS01482F-(cit214)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10194
– volume: 46
  start-page: 9344
  year: 2017
  ident: D0CS01482F-(cit269)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT01694H
– start-page: 305
  year: 1979
  ident: D0CS01482F-(cit94)/*[position()=1]
  publication-title: Chem. Lett.
  doi: 10.1246/cl.1979.305
– volume: 9
  start-page: 33539
  year: 2017
  ident: D0CS01482F-(cit184)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b01547
– volume: 124
  start-page: 16324
  year: 2020
  ident: D0CS01482F-(cit109)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c05144
– volume: 137
  start-page: 13440
  year: 2015
  ident: D0CS01482F-(cit169)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08773
– volume: 118
  start-page: 6337
  year: 2018
  ident: D0CS01482F-(cit251)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00689
– volume: 10
  start-page: 2613
  year: 2019
  ident: D0CS01482F-(cit65)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC04529A
– volume: 9
  start-page: 4466
  year: 2018
  ident: D0CS01482F-(cit196)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06938-z
– volume: 26
  start-page: 3034
  year: 2020
  ident: D0CS01482F-(cit93)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202000160
– volume: 2
  start-page: 850
  year: 2016
  ident: D0CS01482F-(cit47)/*[position()=1]
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.6b00261
– volume: 142
  start-page: 1895
  year: 2020
  ident: D0CS01482F-(cit110)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b10772
– volume: 2
  start-page: 272
  year: 2019
  ident: D0CS01482F-(cit236)/*[position()=1]
  publication-title: Batteries Supercaps
  doi: 10.1002/batt.201800093
– volume: 5
  start-page: 1486
  year: 2019
  ident: D0CS01482F-(cit220)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.03.002
– volume: 125
  start-page: 1866
  year: 2003
  ident: D0CS01482F-(cit378)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja028548o
– volume: 338
  start-page: 90
  year: 2012
  ident: D0CS01482F-(cit79)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1224581
– volume: 115
  start-page: 1936
  year: 2015
  ident: D0CS01482F-(cit11)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr500266a
– volume: 7
  start-page: 4893
  year: 2017
  ident: D0CS01482F-(cit148)/*[position()=1]
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C7CY01653K
– volume: 112
  start-page: 933
  year: 2012
  ident: D0CS01482F-(cit123)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200304e
– volume: 4
  start-page: 732
  year: 2019
  ident: D0CS01482F-(cit246)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0450-y
– volume: 117
  start-page: 3717
  year: 2017
  ident: D0CS01482F-(cit3)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00299
– volume: 30
  start-page: 1707483
  year: 2018
  ident: D0CS01482F-(cit328)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707483
– volume: 118
  start-page: 6189
  year: 2018
  ident: D0CS01482F-(cit211)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00056
– volume: 110
  start-page: 15579
  year: 2013
  ident: D0CS01482F-(cit60)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1315383110
– volume: 11
  start-page: 1890
  year: 2020
  ident: D0CS01482F-(cit86)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b03897
– volume: 48
  start-page: 5310
  year: 2019
  ident: D0CS01482F-(cit332)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00163H
– volume: 45
  start-page: 5635
  year: 2016
  ident: D0CS01482F-(cit208)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00878F
– volume: 67
  start-page: 104233
  year: 2020
  ident: D0CS01482F-(cit202)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104233
– volume: 29
  start-page: 1606134
  year: 2017
  ident: D0CS01482F-(cit153)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606134
– volume: 104
  start-page: 3947
  year: 2004
  ident: D0CS01482F-(cit7)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr020443g
– volume: 5
  start-page: 1005
  year: 2020
  ident: D0CS01482F-(cit354)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02756
– volume: 142
  start-page: 16723
  year: 2020
  ident: D0CS01482F-(cit364)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c07206
– volume: 4
  start-page: 2000085
  year: 2020
  ident: D0CS01482F-(cit197)/*[position()=1]
  publication-title: Small Methods
  doi: 10.1002/smtd.202000085
– volume: 82
  start-page: 493
  year: 2012
  ident: D0CS01482F-(cit228)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.03.132
– volume: 118
  start-page: 2491
  year: 2018
  ident: D0CS01482F-(cit5)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00373
– volume: 142
  start-page: 1933
  year: 2020
  ident: D0CS01482F-(cit377)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11355
– volume: 7
  start-page: 3838
  year: 2019
  ident: D0CS01482F-(cit113)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b04735
– volume: 27
  start-page: 7372
  year: 2015
  ident: D0CS01482F-(cit218)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503648
– volume: 21
  start-page: 2587
  year: 2019
  ident: D0CS01482F-(cit399)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP07463A
– volume: 48
  start-page: 2996
  year: 2015
  ident: D0CS01482F-(cit81)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00262
– volume: 7
  start-page: 3527
  year: 2019
  ident: D0CS01482F-(cit305)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05770
– volume: 3
  start-page: 821
  year: 2016
  ident: D0CS01482F-(cit194)/*[position()=1]
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C5QI00198F
– volume: 9
  start-page: 1687
  year: 2016
  ident: D0CS01482F-(cit346)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03694A
– volume: 46
  start-page: 6927
  year: 2017
  ident: D0CS01482F-(cit147)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00283A
– volume: 49
  start-page: 4135
  year: 2020
  ident: D0CS01482F-(cit144)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00278J
– volume: 64
  start-page: 833
  year: 2015
  ident: D0CS01482F-(cit206)/*[position()=1]
  publication-title: Polym. Int.
  doi: 10.1002/pi.4908
– volume: 43
  start-page: 5257
  year: 2014
  ident: D0CS01482F-(cit238)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00015C
– volume: 59
  start-page: 9171
  year: 2020
  ident: D0CS01482F-(cit227)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202003842
– volume: 15
  start-page: 1963
  year: 2020
  ident: D0CS01482F-(cit296)/*[position()=1]
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.202000083
– start-page: 554
  year: 2006
  ident: D0CS01482F-(cit50)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/B512982F
– volume: 277
  start-page: 102108
  year: 2020
  ident: D0CS01482F-(cit173)/*[position()=1]
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2020.102108
– volume: 42
  start-page: 2423
  year: 2013
  ident: D0CS01482F-(cit76)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35360A
– volume: 24
  start-page: 10984
  year: 2018
  ident: D0CS01482F-(cit395)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201802585
– volume: 138
  start-page: 962
  year: 2016
  ident: D0CS01482F-(cit152)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11720
– volume: 133
  start-page: 5652
  year: 2011
  ident: D0CS01482F-(cit157)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja111042f
– volume: 28
  start-page: 215
  year: 2016
  ident: D0CS01482F-(cit302)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502696
– volume: 31
  start-page: 1900592
  year: 2019
  ident: D0CS01482F-(cit325)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900592
– volume: 11
  start-page: 1520
  year: 2019
  ident: D0CS01482F-(cit313)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b20142
– volume: 10
  start-page: 4632
  year: 2017
  ident: D0CS01482F-(cit106)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201701196
– volume: 42
  start-page: 548
  year: 2013
  ident: D0CS01482F-(cit127)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35072F
– volume: 2
  start-page: 816
  year: 2012
  ident: D0CS01482F-(cit229)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200013
– volume: 140
  start-page: 3871
  year: 2018
  ident: D0CS01482F-(cit385)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00605
– volume: 25
  start-page: 14026
  year: 2019
  ident: D0CS01482F-(cit367)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201902203
– volume: 132
  start-page: 2655
  year: 2010
  ident: D0CS01482F-(cit40)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja908488s
– volume: 30
  start-page: 1704388
  year: 2018
  ident: D0CS01482F-(cit205)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704388
– volume: 11
  start-page: 497
  year: 2020
  ident: D0CS01482F-(cit348)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14237-4
– volume: 118
  start-page: 2302
  year: 2018
  ident: D0CS01482F-(cit226)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00488
– volume: 11
  start-page: 87
  year: 2020
  ident: D0CS01482F-(cit44)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC05041H
– volume: 4
  start-page: 1301523
  year: 2014
  ident: D0CS01482F-(cit265)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201301523
– volume: 139
  start-page: 1424
  year: 2017
  ident: D0CS01482F-(cit394)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12404
– volume: 137
  start-page: 4288
  year: 2015
  ident: D0CS01482F-(cit370)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b00046
– volume: 29
  start-page: 1901301
  year: 2019
  ident: D0CS01482F-(cit191)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901301
– volume: 52
  start-page: 2000
  year: 2013
  ident: D0CS01482F-(cit29)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic302369v
– volume: 303
  start-page: 1831
  year: 2004
  ident: D0CS01482F-(cit63)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1093087
– volume: 135
  start-page: 17105
  year: 2013
  ident: D0CS01482F-(cit178)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja408084j
– volume: 9
  start-page: 10126
  year: 2019
  ident: D0CS01482F-(cit272)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02583
– volume: 138
  start-page: 3031
  year: 2016
  ident: D0CS01482F-(cit164)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10754
– volume: 576
  start-page: 253
  year: 2019
  ident: D0CS01482F-(cit393)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-019-1798-7
– volume: 112
  start-page: 869
  year: 2012
  ident: D0CS01482F-(cit143)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200190s
– volume: 58
  start-page: 10198
  year: 2019
  ident: D0CS01482F-(cit286)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201904058
– volume: 3
  start-page: 75
  year: 2020
  ident: D0CS01482F-(cit345)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0383-7
– volume: 12
  start-page: 37986
  year: 2020
  ident: D0CS01482F-(cit353)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c06537
– volume: 9
  start-page: 457
  year: 2017
  ident: D0CS01482F-(cit307)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2695
– volume: 3
  start-page: 1800415
  year: 2019
  ident: D0CS01482F-(cit139)/*[position()=1]
  publication-title: Small Methods
  doi: 10.1002/smtd.201800415
– volume: 6
  start-page: 2600
  year: 2019
  ident: D0CS01482F-(cit254)/*[position()=1]
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201801859
– volume: 139
  start-page: 18590
  year: 2017
  ident: D0CS01482F-(cit375)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b09553
– volume: 59
  start-page: 10527
  year: 2020
  ident: D0CS01482F-(cit335)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202000601
– volume: 310
  start-page: 1166
  year: 2005
  ident: D0CS01482F-(cit128)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1120411
– volume: 2
  start-page: 555
  year: 2020
  ident: D0CS01482F-(cit403)/*[position()=1]
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2020.01.003
– volume: 54
  start-page: 5604
  year: 2015
  ident: D0CS01482F-(cit66)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b00924
– volume: 117
  start-page: 3377
  year: 2017
  ident: D0CS01482F-(cit49)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00546
– volume: 139
  start-page: 15858
  year: 2017
  ident: D0CS01482F-(cit67)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08678
– volume: 28
  start-page: 3423
  year: 2016
  ident: D0CS01482F-(cit248)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504766
– volume: 55
  start-page: 14510
  year: 2016
  ident: D0CS01482F-(cit279)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201604311
– volume: 5
  start-page: eaaw2322
  year: 2019
  ident: D0CS01482F-(cit322)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw2322
– volume: 30
  start-page: 1705112
  year: 2018
  ident: D0CS01482F-(cit285)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705112
– volume: 2
  start-page: 877
  year: 2017
  ident: D0CS01482F-(cit151)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0018-7
– volume: 48
  start-page: 488
  year: 2019
  ident: D0CS01482F-(cit137)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00376A
– volume: 59
  start-page: 18954
  year: 2020
  ident: D0CS01482F-(cit356)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202006899
– volume: 137
  start-page: 3565
  year: 2015
  ident: D0CS01482F-(cit99)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja512575v
– volume: 112
  start-page: 724
  year: 2012
  ident: D0CS01482F-(cit141)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr2003272
– volume: 141
  start-page: 9155
  year: 2019
  ident: D0CS01482F-(cit38)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b02864
– volume: 7
  start-page: 23055
  year: 2019
  ident: D0CS01482F-(cit352)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA07967J
– year: 2020
  ident: D0CS01482F-(cit172)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201909880
– volume: 133
  start-page: 9178
  year: 2011
  ident: D0CS01482F-(cit70)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja202138m
– volume: 10
  start-page: 2640
  year: 2020
  ident: D0CS01482F-(cit24)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04477
– volume: 135
  start-page: 7438
  year: 2013
  ident: D0CS01482F-(cit392)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja402727d
– volume: 2
  start-page: 35
  year: 2016
  ident: D0CS01482F-(cit134)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2015.11.005
– volume: 4
  start-page: 15621
  year: 2016
  ident: D0CS01482F-(cit281)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA03059A
– volume: 9
  start-page: 32840
  year: 2017
  ident: D0CS01482F-(cit324)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b11229
– volume: 28
  start-page: 4149
  year: 2016
  ident: D0CS01482F-(cit219)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600108
– volume: 57
  start-page: 15070
  year: 2018
  ident: D0CS01482F-(cit116)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201807996
– volume: 57
  start-page: 8525
  year: 2018
  ident: D0CS01482F-(cit287)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201803262
– volume: 59
  start-page: 4634
  year: 2020
  ident: D0CS01482F-(cit119)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201910309
– volume: 8
  start-page: 1837
  year: 2015
  ident: D0CS01482F-(cit135)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE00762C
– volume: 58
  start-page: 10677
  year: 2019
  ident: D0CS01482F-(cit298)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201907002
– volume: 114
  start-page: 3919
  year: 2014
  ident: D0CS01482F-(cit6)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr400415k
– volume: 30
  start-page: 1703663
  year: 2018
  ident: D0CS01482F-(cit149)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703663
– volume: 9
  start-page: 6961
  year: 2018
  ident: D0CS01482F-(cit303)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC02294A
– volume: 113
  start-page: 3606
  year: 1991
  ident: D0CS01482F-(cit154)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00009a065
– volume: 315
  start-page: 1565
  year: 2007
  ident: D0CS01482F-(cit12)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1135844
– volume: 113
  start-page: 6621
  year: 2013
  ident: D0CS01482F-(cit75)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr300463y
– volume: 46
  start-page: 7334
  year: 2010
  ident: D0CS01482F-(cit37)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc01797c
– volume: 55
  start-page: 2650
  year: 2016
  ident: D0CS01482F-(cit252)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201504830
– volume: 141
  start-page: 1807
  year: 2019
  ident: D0CS01482F-(cit125)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10334
– volume: 9
  start-page: 12584
  year: 2017
  ident: D0CS01482F-(cit384)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b16834
– volume: 22
  start-page: 40
  year: 2019
  ident: D0CS01482F-(cit329)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.12.021
– volume: 4
  start-page: 115
  year: 2019
  ident: D0CS01482F-(cit150)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0308-8
– volume: 9
  start-page: 5111
  year: 2019
  ident: D0CS01482F-(cit174)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04960
– volume: 2
  start-page: 65
  year: 2018
  ident: D0CS01482F-(cit290)/*[position()=1]
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0010-1
– volume: 43
  start-page: 98
  year: 2004
  ident: D0CS01482F-(cit383)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200352564
– volume: 46
  start-page: 5730
  year: 2017
  ident: D0CS01482F-(cit216)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00315C
– volume: 4
  start-page: 329
  year: 2019
  ident: D0CS01482F-(cit308)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0355-9
– volume: 12
  start-page: 801
  year: 2019
  ident: D0CS01482F-(cit107)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201802765
– volume: 11
  start-page: 3075
  year: 2018
  ident: D0CS01482F-(cit237)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01991F
– start-page: 3229
  year: 2017
  ident: D0CS01482F-(cit57)/*[position()=1]
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201700394
– volume: 58
  start-page: 4504
  year: 2019
  ident: D0CS01482F-(cit92)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201814339
– volume: 3
  start-page: 2048
  year: 2016
  ident: D0CS01482F-(cit263)/*[position()=1]
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201600435
– volume: 118
  start-page: 2469
  year: 2018
  ident: D0CS01482F-(cit8)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00664
– volume: 51
  start-page: 7440
  year: 2012
  ident: D0CS01482F-(cit185)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201202471
– volume: 1
  start-page: 592
  year: 2018
  ident: D0CS01482F-(cit245)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0108-3
– volume: 11
  start-page: 1723
  year: 2018
  ident: D0CS01482F-(cit190)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00977E
– volume: 139
  start-page: 13476
  year: 2017
  ident: D0CS01482F-(cit404)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06459
– volume: 8
  start-page: 2356
  year: 2016
  ident: D0CS01482F-(cit270)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201600298
– volume: 579
  start-page: 598
  year: 2020
  ident: D0CS01482F-(cit312)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.06.109
– volume: 1
  start-page: 922
  year: 2018
  ident: D0CS01482F-(cit401)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0182-6
– volume: 1
  start-page: 34
  year: 2011
  ident: D0CS01482F-(cit233)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201000010
– volume: 269
  start-page: 1069
  year: 1995
  ident: D0CS01482F-(cit9)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.7652554
– volume: 2
  start-page: 39
  year: 2018
  ident: D0CS01482F-(cit321)/*[position()=1]
  publication-title: Sustainable Energy Fuels
  doi: 10.1039/C7SE00413C
– volume: 7
  start-page: 10942
  year: 2016
  ident: D0CS01482F-(cit390)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10942
– volume: 51
  start-page: 3932
  year: 2012
  ident: D0CS01482F-(cit98)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic3001619
– volume: 19
  start-page: 45
  year: 2015
  ident: D0CS01482F-(cit97)/*[position()=1]
  publication-title: J. Porphyrins phthalocyanines
  doi: 10.1142/S1088424615300013
– volume: 5
  start-page: 2421
  year: 2003
  ident: D0CS01482F-(cit27)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/ol034581j
– volume: 134
  start-page: 5974
  year: 2012
  ident: D0CS01482F-(cit43)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3004914
– volume: 140
  start-page: 15591
  year: 2018
  ident: D0CS01482F-(cit155)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b09521
– volume: 33
  start-page: 1839
  year: 1994
  ident: D0CS01482F-(cit61)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199418391
– volume: 39
  start-page: 20171
  year: 2014
  ident: D0CS01482F-(cit327)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.09.164
– volume: 116
  start-page: 2886
  year: 2016
  ident: D0CS01482F-(cit1)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00340
– volume: 11
  start-page: 2831
  year: 2020
  ident: D0CS01482F-(cit292)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16715-6
– volume: 28
  start-page: 1803329
  year: 2018
  ident: D0CS01482F-(cit234)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803329
– volume: 19
  start-page: 29540
  year: 2017
  ident: D0CS01482F-(cit374)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP06187K
– volume: 4
  start-page: 8661
  year: 2019
  ident: D0CS01482F-(cit317)/*[position()=1]
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201901713
– volume: 355
  start-page: eaal1585
  year: 2017
  ident: D0CS01482F-(cit126)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aal1585
– volume: 138
  start-page: 16639
  year: 2016
  ident: D0CS01482F-(cit80)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07014
– volume: 118
  start-page: 2313
  year: 2018
  ident: D0CS01482F-(cit250)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00335
SSID ssj0011762
Score 2.7046726
SecondaryResourceType review_article
Snippet Porphyrin-based frameworks, as specific kinds of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in...
Porphyrin-based frameworks, as specific kinds of metal–organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 254
SubjectTerms Carbon dioxide
Catalytic converters
Conversion
Crystal structure
electrochemistry
Electron transfer
Energy storage
Mass transfer
Metal air batteries
Metal-organic frameworks
oxygen
Oxygen evolution reactions
oxygen production
Oxygen reduction reactions
Porphyrins
Rechargeable batteries
Storage batteries
structure-activity relationships
Zinc-oxygen batteries
Title Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide
URI https://www.ncbi.nlm.nih.gov/pubmed/33475099
https://www.proquest.com/docview/2494319583
https://www.proquest.com/docview/2479741349
https://www.proquest.com/docview/2524268661
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gAviNugYyAjeEFVRupL4zxOpVVBZSDRirIHQhLbrNLUTF0rjf16jm9JdxEaPDRKjx0r8vnic2wffwehNwVggIHZibggZpuxSKM0LmgExlwkSpGSFuaA86fD3mjKPs74rNX6sRG1tF4V--XFjedK_kerIAO9mlOy_6DZulEQwD3oF66gYbjeSsdfKtNLy_kiMsZIdnSItLIkC53q_PcvQ-LvMt3YhRrLP2KPstl_jsBZOgZZG2GeLwu4k_PqfC4v0xgEZoEQ5-l5TOuInrlfeT5aVxfHlTeIdqneyUcgi743YDw6Vr4gB-O0KfcPfFPzzTUJshGU5YdR1osjljhmxzDOOoJZjyfWOd0nJiiDcJeyJQyg3LE3eWMcSq8N9DE1PKkyLs_MkijRjTkLW_iHn7PhdDzOJoPZ5A7aJjCNgHFw-2Aw-TCu95m6iU05W79vILCl6bum7csuy7V5CHgly5Atxnolkwfovp9O4AOHjYeopRaP0N1-yOL3GP28ghHcYAQDRrDDCL6KEQwYwTVGcI0RXGnsMII9Rp6g6XAw6Y8in1UjKhntrSKZ5qliimtpmEIZy3mpC6ETAkM5V6JLu8oIYijpSp6WMuFaM_h1S0lVr6Q7aGtRLdQzhJO45LGUQsCsgmkiCi5kLnKlaQFuLNFt9DZ0XFZ6ynmT-eQks6EPNM3ex_2vtpOHbfS6rnvqiFZurLUX-j_zH-JZRlgKbnDKBW2jV3Ux9LPZ-8oXqlqbOgnMnA0X51_qcOOvCvBY2-ip0239KpQy41vD0zug7FrcgGT3Fs0-R_ear2UPba2Wa_UCfNpV8dID8w9GiqWA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porphyrin-based+frameworks+for+oxygen+electrocatalysis+and+catalytic+reduction+of+carbon+dioxide&rft.jtitle=Chemical+Society+reviews&rft.au=Liang%2C+Zuozhong&rft.au=Wang%2C+Hong-Yan&rft.au=Zheng%2C+Haoquan&rft.au=Zhang%2C+Wei&rft.date=2021-03-01&rft.issn=1460-4744&rft.volume=50&rft.issue=4+p.2540-2581&rft.spage=2540&rft.epage=2581&rft_id=info:doi/10.1039%2Fd0cs01482f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon