Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide
Porphyrin-based frameworks, as specific kinds of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in energy-related conversion processes, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and CO 2 reduction reaction (CO 2 RR),...
Saved in:
Published in | Chemical Society reviews Vol. 5; no. 4; pp. 254 - 2581 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Porphyrin-based frameworks, as specific kinds of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in energy-related conversion processes, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and CO
2
reduction reaction (CO
2
RR), and also in energy-related storage technologies such as rechargeable Zn-air batteries. This review starts by summarizing typical crystal structures, molecular building blocks, and common synthetic procedures of various porphyrin-based frameworks used in energy-related technologies. Then, a brief introduction is provided and representative applications of porphyrin-based frameworks in ORR, OER, Zn-air batteries, and CO
2
RR are discussed. The performance comparison of these porphyrin-based frameworks in each field is also summarized and discussed, which pinpoints a clear structure-activity relationship. In addition to utilizing highly active porphyrin units for catalytic conversions, regulating the porous structures of porphyrin-based frameworks will enhance mass transfer and growing porphyrin-based frameworks on conductive supports will accelerate electron transfer, which will result in the improvement of the electrocatalytic performance. This review is therefore valuable for the rational design of more efficient porphyrin-based framework catalytic systems in energy-related conversion and storage technologies.
The recent progress made on porphyrin-based frameworks and their applications in energy-related conversion technologies (
e.g.
, ORR, OER and CO
2
RR) and storage technologies (
e.g.
, Zn-air batteries). |
---|---|
AbstractList | Porphyrin-based frameworks, as specific kinds of metal–organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in energy-related conversion processes, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and CO2 reduction reaction (CO2RR), and also in energy-related storage technologies such as rechargeable Zn–air batteries. This review starts by summarizing typical crystal structures, molecular building blocks, and common synthetic procedures of various porphyrin-based frameworks used in energy-related technologies. Then, a brief introduction is provided and representative applications of porphyrin-based frameworks in ORR, OER, Zn–air batteries, and CO2RR are discussed. The performance comparison of these porphyrin-based frameworks in each field is also summarized and discussed, which pinpoints a clear structure–activity relationship. In addition to utilizing highly active porphyrin units for catalytic conversions, regulating the porous structures of porphyrin-based frameworks will enhance mass transfer and growing porphyrin-based frameworks on conductive supports will accelerate electron transfer, which will result in the improvement of the electrocatalytic performance. This review is therefore valuable for the rational design of more efficient porphyrin-based framework catalytic systems in energy-related conversion and storage technologies. Porphyrin-based frameworks, as specific kinds of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in energy-related conversion processes, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and CO 2 reduction reaction (CO 2 RR), and also in energy-related storage technologies such as rechargeable Zn-air batteries. This review starts by summarizing typical crystal structures, molecular building blocks, and common synthetic procedures of various porphyrin-based frameworks used in energy-related technologies. Then, a brief introduction is provided and representative applications of porphyrin-based frameworks in ORR, OER, Zn-air batteries, and CO 2 RR are discussed. The performance comparison of these porphyrin-based frameworks in each field is also summarized and discussed, which pinpoints a clear structure-activity relationship. In addition to utilizing highly active porphyrin units for catalytic conversions, regulating the porous structures of porphyrin-based frameworks will enhance mass transfer and growing porphyrin-based frameworks on conductive supports will accelerate electron transfer, which will result in the improvement of the electrocatalytic performance. This review is therefore valuable for the rational design of more efficient porphyrin-based framework catalytic systems in energy-related conversion and storage technologies. The recent progress made on porphyrin-based frameworks and their applications in energy-related conversion technologies ( e.g. , ORR, OER and CO 2 RR) and storage technologies ( e.g. , Zn-air batteries). Porphyrin-based frameworks, as specific kinds of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in energy-related conversion processes, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and CO2 reduction reaction (CO2RR), and also in energy-related storage technologies such as rechargeable Zn-air batteries. This review starts by summarizing typical crystal structures, molecular building blocks, and common synthetic procedures of various porphyrin-based frameworks used in energy-related technologies. Then, a brief introduction is provided and representative applications of porphyrin-based frameworks in ORR, OER, Zn-air batteries, and CO2RR are discussed. The performance comparison of these porphyrin-based frameworks in each field is also summarized and discussed, which pinpoints a clear structure-activity relationship. In addition to utilizing highly active porphyrin units for catalytic conversions, regulating the porous structures of porphyrin-based frameworks will enhance mass transfer and growing porphyrin-based frameworks on conductive supports will accelerate electron transfer, which will result in the improvement of the electrocatalytic performance. This review is therefore valuable for the rational design of more efficient porphyrin-based framework catalytic systems in energy-related conversion and storage technologies.Porphyrin-based frameworks, as specific kinds of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in energy-related conversion processes, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and CO2 reduction reaction (CO2RR), and also in energy-related storage technologies such as rechargeable Zn-air batteries. This review starts by summarizing typical crystal structures, molecular building blocks, and common synthetic procedures of various porphyrin-based frameworks used in energy-related technologies. Then, a brief introduction is provided and representative applications of porphyrin-based frameworks in ORR, OER, Zn-air batteries, and CO2RR are discussed. The performance comparison of these porphyrin-based frameworks in each field is also summarized and discussed, which pinpoints a clear structure-activity relationship. In addition to utilizing highly active porphyrin units for catalytic conversions, regulating the porous structures of porphyrin-based frameworks will enhance mass transfer and growing porphyrin-based frameworks on conductive supports will accelerate electron transfer, which will result in the improvement of the electrocatalytic performance. This review is therefore valuable for the rational design of more efficient porphyrin-based framework catalytic systems in energy-related conversion and storage technologies. Porphyrin-based frameworks, as specific kinds of metal–organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in energy-related conversion processes, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and CO₂ reduction reaction (CO₂RR), and also in energy-related storage technologies such as rechargeable Zn–air batteries. This review starts by summarizing typical crystal structures, molecular building blocks, and common synthetic procedures of various porphyrin-based frameworks used in energy-related technologies. Then, a brief introduction is provided and representative applications of porphyrin-based frameworks in ORR, OER, Zn–air batteries, and CO₂RR are discussed. The performance comparison of these porphyrin-based frameworks in each field is also summarized and discussed, which pinpoints a clear structure–activity relationship. In addition to utilizing highly active porphyrin units for catalytic conversions, regulating the porous structures of porphyrin-based frameworks will enhance mass transfer and growing porphyrin-based frameworks on conductive supports will accelerate electron transfer, which will result in the improvement of the electrocatalytic performance. This review is therefore valuable for the rational design of more efficient porphyrin-based framework catalytic systems in energy-related conversion and storage technologies. Porphyrin-based frameworks, as specific kinds of metal–organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in energy-related conversion processes, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and CO 2 reduction reaction (CO 2 RR), and also in energy-related storage technologies such as rechargeable Zn–air batteries. This review starts by summarizing typical crystal structures, molecular building blocks, and common synthetic procedures of various porphyrin-based frameworks used in energy-related technologies. Then, a brief introduction is provided and representative applications of porphyrin-based frameworks in ORR, OER, Zn–air batteries, and CO 2 RR are discussed. The performance comparison of these porphyrin-based frameworks in each field is also summarized and discussed, which pinpoints a clear structure–activity relationship. In addition to utilizing highly active porphyrin units for catalytic conversions, regulating the porous structures of porphyrin-based frameworks will enhance mass transfer and growing porphyrin-based frameworks on conductive supports will accelerate electron transfer, which will result in the improvement of the electrocatalytic performance. This review is therefore valuable for the rational design of more efficient porphyrin-based framework catalytic systems in energy-related conversion and storage technologies. |
Author | Zheng, Haoquan Cao, Rui Wang, Hong-Yan Liang, Zuozhong Zhang, Wei |
AuthorAffiliation | Shaanxi Normal University Ministry of Education, School of Chemistry and Chemical Engineering Key Laboratory of Applied Surface and Colloid Chemistry |
AuthorAffiliation_xml | – name: Key Laboratory of Applied Surface and Colloid Chemistry – name: Shaanxi Normal University – name: Ministry of Education, School of Chemistry and Chemical Engineering |
Author_xml | – sequence: 1 givenname: Zuozhong surname: Liang fullname: Liang, Zuozhong – sequence: 2 givenname: Hong-Yan surname: Wang fullname: Wang, Hong-Yan – sequence: 3 givenname: Haoquan surname: Zheng fullname: Zheng, Haoquan – sequence: 4 givenname: Wei surname: Zhang fullname: Zhang, Wei – sequence: 5 givenname: Rui surname: Cao fullname: Cao, Rui |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33475099$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1LAzEQhoNUtK1evCsLXkRYTTbZjxylWhUKCup5TZOJRrebmuxi--9NbatQBA9DZibPOyQz00Od2taA0AHBZwRTfq6w9JiwItFbqEtYhmOWM9ZBXUxxFmNMkl3U8_4teCTPkh20SynLU8x5Fz3fWzd9nTtTx2PhQUXaiQl8WvfuI21dZGfzF6gjqEA2zkrRiGrujY9EraJl1BgZOVCtbIytI6tD2o2Dp4ydGQV7aFuLysP-6uyjp-HV4-AmHt1d3w4uRrFkNGtixQUHBqlWGC9eL1Kpx4XOE1YUKRSEElgkcLghKuVS5anWLBiRikImaR-dLOtOnf1owTflxHgJVSVqsK0vkzRhSVZkGfkfZTnPGaGMB_R4A32zravDRwLFGSU8LWigjlZUO56AKqfOTISbl-s2BwAvAems9w50KU0jFg1rnDBVSXC5mGR5iQcP35McBsnphmRd9U_4cAk7L3-437WgX8APqE4 |
CitedBy_id | crossref_primary_10_1002_ange_202416771 crossref_primary_10_1016_j_ensm_2024_103297 crossref_primary_10_1039_D4QI00314D crossref_primary_10_1039_D4TA07837C crossref_primary_10_1016_j_jallcom_2022_163994 crossref_primary_10_1016_S1872_2067_20_63762_7 crossref_primary_10_1002_chem_202302474 crossref_primary_10_1021_acs_nanolett_4c05103 crossref_primary_10_1002_anie_202314439 crossref_primary_10_1021_acsami_3c10802 crossref_primary_10_1016_j_ccr_2024_215944 crossref_primary_10_1038_s41467_024_50377_y crossref_primary_10_1002_anie_202411216 crossref_primary_10_1039_D1CC04928C crossref_primary_10_1002_adma_202408094 crossref_primary_10_1002_aoc_7116 crossref_primary_10_1002_ejic_202400259 crossref_primary_10_1016_j_jcis_2023_04_082 crossref_primary_10_1016_j_apcatb_2022_121451 crossref_primary_10_1021_acs_biomac_3c01356 crossref_primary_10_1016_j_ccr_2022_214969 crossref_primary_10_3390_nano12071124 crossref_primary_10_1002_ange_202414104 crossref_primary_10_1002_adma_202105647 crossref_primary_10_1002_ange_202212710 crossref_primary_10_1360_TB_2024_0942 crossref_primary_10_1002_smll_202306273 crossref_primary_10_1016_j_diamond_2024_111147 crossref_primary_10_1039_D3TA04472F crossref_primary_10_1002_anie_202500154 crossref_primary_10_1021_jacsau_4c00246 crossref_primary_10_1039_D1NJ02651H crossref_primary_10_1002_smll_202301818 crossref_primary_10_1002_anie_202115503 crossref_primary_10_1007_s12274_022_4681_z crossref_primary_10_1021_acsami_2c21616 crossref_primary_10_1016_j_checat_2024_101006 crossref_primary_10_1016_j_trechm_2022_07_007 crossref_primary_10_1002_adfm_202302561 crossref_primary_10_1002_sstr_202300495 crossref_primary_10_1002_sstr_202200087 crossref_primary_10_1016_j_jcis_2021_11_045 crossref_primary_10_1016_j_nanoms_2023_10_002 crossref_primary_10_1360_SSC_2022_0056 crossref_primary_10_1039_D1TA00802A crossref_primary_10_1016_j_apcatb_2022_121324 crossref_primary_10_1039_D4NJ03904A crossref_primary_10_1016_j_jechem_2024_06_033 crossref_primary_10_1002_cssc_202200086 crossref_primary_10_1002_asia_202200161 crossref_primary_10_1039_D2CY01326F crossref_primary_10_1039_D4TA02623C crossref_primary_10_1039_D3QM01315D crossref_primary_10_1039_D2QI01118B crossref_primary_10_3390_ijms23116036 crossref_primary_10_1016_j_ccst_2022_100081 crossref_primary_10_1039_D2NR06190B crossref_primary_10_3390_molecules27082586 crossref_primary_10_1039_D4BM00214H crossref_primary_10_1039_D3TA06945A crossref_primary_10_1039_D2DT00166G crossref_primary_10_1002_cctc_202400438 crossref_primary_10_1016_j_cej_2024_156428 crossref_primary_10_1039_D3TA03023G crossref_primary_10_1016_j_cattod_2023_114149 crossref_primary_10_1002_ange_202102523 crossref_primary_10_1016_j_cclet_2021_04_048 crossref_primary_10_1007_s40242_022_2219_2 crossref_primary_10_1016_j_electacta_2024_145113 crossref_primary_10_1002_cnl2_133 crossref_primary_10_1039_D2CP05786G crossref_primary_10_3390_c7020047 crossref_primary_10_1039_D3CC05214A crossref_primary_10_1016_j_cej_2024_151412 crossref_primary_10_1002_ange_202409793 crossref_primary_10_1039_D4TA00849A crossref_primary_10_1016_j_ccr_2024_216240 crossref_primary_10_1016_j_jelechem_2022_117082 crossref_primary_10_1039_D3GC04332K crossref_primary_10_1039_D4TA07187E crossref_primary_10_1021_acs_analchem_4c05606 crossref_primary_10_1021_acs_inorgchem_4c03075 crossref_primary_10_1002_ejic_202200453 crossref_primary_10_1016_S1872_2067_21_63957_8 crossref_primary_10_1021_acs_inorgchem_4c03870 crossref_primary_10_1016_j_molstruc_2024_140978 crossref_primary_10_1039_D3SC06177A crossref_primary_10_1002_ange_202500154 crossref_primary_10_1016_j_jcis_2021_08_210 crossref_primary_10_1002_anie_202414249 crossref_primary_10_1016_j_jobe_2024_108770 crossref_primary_10_1002_chem_202302395 crossref_primary_10_1039_D3NJ01288C crossref_primary_10_1016_j_eurpolymj_2022_111734 crossref_primary_10_1002_ange_202115503 crossref_primary_10_1002_ange_202201104 crossref_primary_10_1021_acs_inorgchem_2c01517 crossref_primary_10_1021_acs_inorgchem_4c02460 crossref_primary_10_1016_j_jechem_2021_08_068 crossref_primary_10_1016_j_cej_2022_137964 crossref_primary_10_1021_acsnano_2c07542 crossref_primary_10_1002_aenm_202304371 crossref_primary_10_1002_kin_21743 crossref_primary_10_1002_ange_202302152 crossref_primary_10_1016_j_cclet_2021_11_055 crossref_primary_10_1021_acs_energyfuels_2c01544 crossref_primary_10_1016_j_ccr_2021_214264 crossref_primary_10_1016_j_isci_2025_112007 crossref_primary_10_1016_j_mtcata_2024_100044 crossref_primary_10_3390_polym15040915 crossref_primary_10_1016_j_mcat_2023_113797 crossref_primary_10_3390_catal12060671 crossref_primary_10_1002_celc_202200900 crossref_primary_10_1016_j_apcata_2024_119617 crossref_primary_10_1002_ejic_202400188 crossref_primary_10_1002_anie_202209602 crossref_primary_10_1016_j_ica_2022_121278 crossref_primary_10_1002_adfm_202417621 crossref_primary_10_1002_ange_202101562 crossref_primary_10_1016_j_jallcom_2025_179637 crossref_primary_10_1002_anie_202102523 crossref_primary_10_1126_sciadv_add5598 crossref_primary_10_1039_D4CC06012A crossref_primary_10_1360_SSC_2022_0017 crossref_primary_10_1002_anie_202414104 crossref_primary_10_1021_jacs_2c09862 crossref_primary_10_1021_acscatal_4c01720 crossref_primary_10_1002_anie_202114648 crossref_primary_10_1002_ange_202209602 crossref_primary_10_1016_j_jallcom_2023_172775 crossref_primary_10_1016_j_apcatb_2023_122446 crossref_primary_10_1039_D3QM00844D crossref_primary_10_1002_anie_202101562 crossref_primary_10_1002_ange_202414249 crossref_primary_10_1016_j_cclet_2024_110330 crossref_primary_10_1039_D1TA08146B crossref_primary_10_1016_S1872_2067_23_64592_9 crossref_primary_10_1007_s12274_022_5307_1 crossref_primary_10_1002_anie_202305213 crossref_primary_10_1002_anie_202416771 crossref_primary_10_1039_D4DT00788C crossref_primary_10_1002_ange_202314833 crossref_primary_10_1002_cctc_202401394 crossref_primary_10_1039_D3CC05597C crossref_primary_10_1016_j_esci_2022_06_003 crossref_primary_10_1039_D2SC03238D crossref_primary_10_1016_j_ccr_2021_213996 crossref_primary_10_1039_D2NJ00734G crossref_primary_10_1016_j_jcis_2021_12_024 crossref_primary_10_1038_s41467_023_39544_9 crossref_primary_10_1016_j_jssc_2021_122616 crossref_primary_10_1039_D3QI00589E crossref_primary_10_1002_ange_202114648 crossref_primary_10_1016_j_ijbiomac_2024_132893 crossref_primary_10_1021_acs_energyfuels_4c01963 crossref_primary_10_1016_j_eurpolymj_2021_110925 crossref_primary_10_1039_D4QI02101K crossref_primary_10_1016_j_snb_2023_134703 crossref_primary_10_1039_D4CC01630K crossref_primary_10_1002_ange_202305213 crossref_primary_10_1039_D3TB01380D crossref_primary_10_3390_molecules29112563 crossref_primary_10_1016_j_apcatb_2024_123907 crossref_primary_10_1002_aenm_202402278 crossref_primary_10_1002_anie_202314833 crossref_primary_10_1039_D3AN00947E crossref_primary_10_1016_j_fuel_2023_129760 crossref_primary_10_1002_smll_202310147 crossref_primary_10_1039_D1CC04369B crossref_primary_10_1021_acs_jpcc_4c04313 crossref_primary_10_1002_adma_202101568 crossref_primary_10_1039_D3QM01190A crossref_primary_10_1039_D3TA06745A crossref_primary_10_1016_j_energy_2023_128766 crossref_primary_10_1016_j_jelechem_2023_117798 crossref_primary_10_1021_acs_accounts_1c00753 crossref_primary_10_1021_jacs_3c07471 crossref_primary_10_1016_j_molstruc_2025_141933 crossref_primary_10_1016_j_cclet_2025_111000 crossref_primary_10_1142_S1088424621500760 crossref_primary_10_1002_ange_202418443 crossref_primary_10_1016_j_ccr_2023_215039 crossref_primary_10_1016_j_mtsust_2023_100371 crossref_primary_10_1016_j_ijhydene_2023_11_096 crossref_primary_10_1016_S1872_2067_21_63980_3 crossref_primary_10_1021_acs_inorgchem_4c01049 crossref_primary_10_1002_ejic_202300374 crossref_primary_10_1002_ange_202302808 crossref_primary_10_1016_j_jcis_2023_12_004 crossref_primary_10_1002_ejic_202200744 crossref_primary_10_1007_s40242_021_1374_1 crossref_primary_10_1016_j_ccr_2024_215894 crossref_primary_10_1039_D2CS00843B crossref_primary_10_1002_celc_202100492 crossref_primary_10_1016_j_ccr_2022_214563 crossref_primary_10_1016_j_enchem_2021_100065 crossref_primary_10_1021_acsanm_4c00719 crossref_primary_10_1039_D2QI02564G crossref_primary_10_1039_D3CS00873H crossref_primary_10_1016_j_jcou_2022_102132 crossref_primary_10_1016_S1872_2067_21_63939_6 crossref_primary_10_1360_TB_2022_0765 crossref_primary_10_1016_j_mcat_2024_114430 crossref_primary_10_1002_anie_202302152 crossref_primary_10_1039_D2TA01646J crossref_primary_10_1002_smll_202308285 crossref_primary_10_1039_D2CC00865C crossref_primary_10_1039_D4EE03704A crossref_primary_10_1016_j_jcis_2021_08_117 crossref_primary_10_1007_s11051_022_05556_7 crossref_primary_10_1016_j_materresbull_2025_113329 crossref_primary_10_1002_anie_202409793 crossref_primary_10_1007_s00894_023_05659_5 crossref_primary_10_1016_j_cej_2021_133222 crossref_primary_10_1016_j_dyepig_2023_111873 crossref_primary_10_1038_s41467_021_26724_8 crossref_primary_10_1021_jacs_1c02145 crossref_primary_10_1039_D4CY00746H crossref_primary_10_1002_ange_202411216 crossref_primary_10_1016_j_jcis_2023_01_121 crossref_primary_10_1039_D1SE01257F crossref_primary_10_1039_D4NR02650K crossref_primary_10_1016_j_cej_2023_147141 crossref_primary_10_1039_D2TA07289K crossref_primary_10_1002_smll_202406180 crossref_primary_10_1002_sstr_202200150 crossref_primary_10_1021_acs_nanolett_2c00446 crossref_primary_10_1016_j_reactfunctpolym_2023_105718 crossref_primary_10_1021_jacs_2c13817 crossref_primary_10_1039_D4TA00998C crossref_primary_10_1002_tcr_202100329 crossref_primary_10_1039_D2NR02499C crossref_primary_10_1016_j_jssc_2021_122812 crossref_primary_10_1002_advs_202201134 crossref_primary_10_1016_j_ijhydene_2022_03_270 crossref_primary_10_1016_j_mcat_2022_112901 crossref_primary_10_1002_anie_202201104 crossref_primary_10_1016_j_ccr_2024_215794 crossref_primary_10_1039_D3TA08064A crossref_primary_10_1002_cssc_202300841 crossref_primary_10_1002_cnma_202300027 crossref_primary_10_1039_D3TA07004B crossref_primary_10_1021_acs_chemrev_2c00879 crossref_primary_10_1007_s12274_021_3962_2 crossref_primary_10_1002_cey2_303 crossref_primary_10_1039_D4CP04148H crossref_primary_10_1016_j_apcatb_2023_122891 crossref_primary_10_1016_j_mtchem_2022_100777 crossref_primary_10_1021_jacs_4c10997 crossref_primary_10_1007_s40843_024_3165_6 crossref_primary_10_1016_j_cej_2024_150812 crossref_primary_10_2139_ssrn_4176726 crossref_primary_10_1002_ange_202317015 crossref_primary_10_1039_D3CS00727H crossref_primary_10_1016_j_mcat_2024_114517 crossref_primary_10_1002_anie_202302808 crossref_primary_10_1515_corrrev_2024_0012 crossref_primary_10_1016_j_ensm_2022_08_022 crossref_primary_10_1016_j_jallcom_2021_161929 crossref_primary_10_1016_j_jelechem_2024_118445 crossref_primary_10_1080_00958972_2022_2103687 crossref_primary_10_1039_D4CE00889H crossref_primary_10_1016_j_cej_2021_132038 crossref_primary_10_1016_j_snb_2023_134435 crossref_primary_10_1002_adfm_202311086 crossref_primary_10_1016_j_molstruc_2023_135559 crossref_primary_10_1002_chem_202302201 crossref_primary_10_1021_acs_jpclett_2c03235 crossref_primary_10_1002_aenm_202400160 crossref_primary_10_1039_D4CC02651A crossref_primary_10_1016_j_tetlet_2025_155456 crossref_primary_10_1039_D3RA02142D crossref_primary_10_1016_j_cej_2022_135150 crossref_primary_10_1016_j_ccr_2024_216385 crossref_primary_10_1016_j_seppur_2024_127090 crossref_primary_10_1002_aenm_202102062 crossref_primary_10_1039_D0CS01605E crossref_primary_10_3390_catal12111485 crossref_primary_10_1021_acsnano_4c07613 crossref_primary_10_1002_pol_20230164 crossref_primary_10_1016_j_cej_2022_136129 crossref_primary_10_1002_chem_202401339 crossref_primary_10_1016_j_cclet_2022_108052 crossref_primary_10_1016_j_cej_2022_136128 crossref_primary_10_1002_ijch_202100077 crossref_primary_10_1142_S1088424622300075 crossref_primary_10_1002_asia_202200160 crossref_primary_10_3390_molecules29235655 crossref_primary_10_1360_SSC_2024_0121 crossref_primary_10_1002_anie_202114244 crossref_primary_10_1016_j_jcis_2025_02_173 crossref_primary_10_1021_acs_jpcc_1c07578 crossref_primary_10_1021_acsomega_3c01793 crossref_primary_10_1016_j_jcis_2025_01_247 crossref_primary_10_1039_D1NR07614K crossref_primary_10_1016_j_jechem_2023_08_042 crossref_primary_10_1039_D2QI00336H crossref_primary_10_1039_D4MA00739E crossref_primary_10_3390_ijms25084183 crossref_primary_10_1007_s41664_024_00340_z crossref_primary_10_1021_acs_analchem_3c03872 crossref_primary_10_1002_advs_202206239 crossref_primary_10_1016_j_cclet_2021_02_032 crossref_primary_10_1016_j_mtphys_2024_101392 crossref_primary_10_1021_acsanm_2c00831 crossref_primary_10_1002_adfm_202200763 crossref_primary_10_1021_acscatal_2c00847 crossref_primary_10_1039_D4CP01235F crossref_primary_10_1021_acs_chemmater_1c03136 crossref_primary_10_1016_j_cej_2023_146491 crossref_primary_10_1002_adma_202302122 crossref_primary_10_1002_chem_202402575 crossref_primary_10_1021_acs_iecr_2c00152 crossref_primary_10_1039_D4GC00717D crossref_primary_10_1039_D1CE00545F crossref_primary_10_1002_ange_202314439 crossref_primary_10_1039_D4EE01748J crossref_primary_10_1002_ange_202114244 crossref_primary_10_1002_ejoc_202201319 crossref_primary_10_1039_D1TA07989A crossref_primary_10_1016_j_cej_2021_131089 crossref_primary_10_1002_cctc_202401674 crossref_primary_10_1016_j_checat_2025_101325 crossref_primary_10_1002_anie_202317015 crossref_primary_10_1016_j_cclet_2021_07_038 crossref_primary_10_1016_j_molstruc_2024_138340 crossref_primary_10_1039_D3QM00188A crossref_primary_10_1016_j_jallcom_2024_174985 crossref_primary_10_1002_aenm_202302382 crossref_primary_10_1002_smtd_202200515 crossref_primary_10_1021_jacs_1c05204 crossref_primary_10_1002_adfm_202203224 crossref_primary_10_1016_j_desal_2024_118206 crossref_primary_10_1039_D2CC02775E crossref_primary_10_1002_smm2_1102 crossref_primary_10_1002_agt2_330 crossref_primary_10_3390_molecules27165193 crossref_primary_10_1002_anie_202418443 crossref_primary_10_1002_anie_202212710 |
Cites_doi | 10.1039/C6CS00724D 10.1002/anie.201915537 10.1016/j.dyepig.2020.108568 10.1039/C9SE00460B 10.1002/anie.201800817 10.1021/jacs.5b08440 10.1038/s41929-020-0450-0 10.1126/science.aac8343 10.1021/acs.chemrev.7b00459 10.1021/acscatal.5b00666 10.1002/advs.201700194 10.1126/science.1230444 10.1016/j.joule.2018.06.019 10.1039/C8CS00113H 10.1002/adma.201604685 10.1039/b001620i 10.1021/jacs.0c04758 10.1039/D0CS00017E 10.1039/C5DT04025F 10.1039/C7CC02113E 10.1039/c0sc00281j 10.1021/acs.accounts.9b00496 10.1021/jacs.7b04141 10.1021/acs.accounts.8b00010 10.1002/anie.201701104 10.1038/s41929-019-0304-9 10.1021/jp101011f 10.1039/C7CS00248C 10.1039/c2cc32832a 10.1038/nmat2769 10.1002/anie.202005242 10.1021/acs.organomet.8b00334 10.1039/C8SC04344B 10.1021/acscatal.5b01767 10.31635/ccschem.019.20190011 10.1021/jacs.7b04122 10.1021/jacs.9b10787 10.1039/C8CC02646G 10.1002/anie.201907399 10.1038/378703a0 10.1016/j.jinorgbio.2006.01.010 10.1021/jacs.7b11940 10.1126/sciadv.aap9252 10.1149/1.3521317 10.1039/C9CC06916J 10.1021/acs.chemmater.6b01370 10.1002/anie.202002311 10.1002/anie.201803873 10.1126/science.1083440 10.1021/ja500984k 10.1002/(SICI)1521-3773(19981231)37:24<3397::AID-ANIE3397>3.0.CO;2-N 10.1016/j.elecom.2015.01.021 10.1016/j.joule.2020.07.009 10.1021/ja106217u 10.1021/acs.chemrev.8b00074 10.1039/C9SC02711D 10.1126/science.aax4608 10.1021/jacs.5b00914 10.1021/acs.jpcc.5b10763 10.1038/nchem.2159 10.1021/cs3003098 10.1038/ncomms13461 10.1038/ncomms2812 10.1039/C8SC05247F 10.1021/ic300886s 10.1021/jacs.0c05909 10.1039/C7CC02400B 10.1021/jacs.0c05530 10.1021/acscatal.6b01579 10.1039/D0SE00271B 10.1002/aenm.201801280 10.1038/s41570-017-0087 10.1016/j.matt.2019.05.008 10.1002/anie.201204475 10.1038/s41586-019-1603-7 10.1021/jacs.9b02640 10.1016/j.chempr.2016.12.002 10.1021/jacs.9b01229 10.1039/C9CS00880B 10.1016/j.cclet.2019.03.026 10.1038/ncomms14675 10.1039/C5CE02106E 10.1016/S1872-2067(20)63681-6 10.1002/anie.201410738 10.1021/cr400572f 10.1038/s41929-018-0063-z 10.1021/jacs.0c07257 10.1021/acscatal.6b01815 10.1002/chem.201903064 10.1021/acs.accounts.8b00302 10.1021/jacs.5b06834 10.1039/C4TA06231K 10.1002/anie.201911441 10.1016/j.ccr.2017.09.001 10.1002/anie.201510001 10.1039/C3CP54361G 10.1002/anie.201916131 10.1021/acscatal.7b02647 10.1021/acscatal.9b00529 10.1002/smll.202001171 10.1039/C4DT01072H 10.1021/acscatal.0c01085 10.1142/S1088424620500157 10.1002/asia.202000438 10.1039/C8EE03403F 10.1021/jacs.0c03861 10.1002/chem.201500716 10.1002/anie.201900499 10.1021/acsaem.8b00797 10.1038/s41570-017-0098 10.1039/C9TA00040B 10.1002/adma.201804784 10.1039/C9EE04040D 10.1002/slct.201904580 10.1039/C8CS00897C 10.1021/acsenergylett.8b00245 10.1016/j.apcatb.2020.118908 10.1021/acsaem.8b01900 10.1038/ncomms4242 10.1016/j.cej.2020.125255 10.1021/acscatal.9b00213 10.1021/ja211433h 10.1002/adma.201500727 10.1021/acsenergylett.7b00119 10.1039/C7DT00823F 10.1002/anie.202010859 10.1016/j.nanoen.2018.02.015 10.1007/s41918-019-00031-9 10.1039/C3CS60472A 10.1021/jacs.9b09502 10.1016/j.joule.2018.09.019 10.1039/C5CS00670H 10.1038/s41586-019-1760-8 10.1002/cctc.201902034 10.1002/anie.201608597 10.1002/anie.201808226 10.1038/s41563-020-0610-2 10.1142/S1088424615300049 10.1016/j.ccr.2019.213157 10.1002/anie.201308896 10.1002/ejic.201900940 10.1039/C6CC00982D 10.1021/acs.chemmater.5b00882 10.1002/anie.202008787 10.1038/s41929-019-0235-5 10.1039/C6CC05430G 10.1039/C8DT03850C 10.1002/anie.201807854 10.1039/C8TA06785F 10.1039/c2dt11989g 10.1021/jp101036j 10.1002/adma.201904037 10.1039/C8RA08338J 10.3390/molecules21101348 10.1038/s41929-019-0306-7 10.1021/acscatal.8b01944 10.1039/c3cc43031f 10.1021/jp1012335 10.1021/jacs.9b13654 10.1039/C6CS00328A 10.1021/jacs.8b02983 10.1002/anie.201916595 10.1021/acscatal.9b00310 10.1021/cr500519c 10.1021/acscatal.0c00559 10.1007/s12274-016-1400-7 10.1002/adma.201304147 10.1002/adma.201805126 10.1039/C9DT04709C 10.1016/j.enchem.2020.100029 10.1126/science.1246738 10.1038/369727a0 10.1002/aenm.201900090 10.1002/adma.201806599 10.1039/C9CS00869A 10.1021/jacs.0c06329 10.1016/j.carbon.2011.07.004 10.1021/ar040173j 10.1039/C8CS00688A 10.1021/acs.inorgchem.7b00839 10.1021/acs.chemrev.5b00462 10.1039/C9EE03660A 10.1021/acscatal.0c01459 10.1002/anie.202003836 10.1021/jacs.8b08088 10.1002/advs.201801410 10.1021/acs.accounts.0c00044 10.1021/acsenergylett.7b00267 10.1021/ic402297f 10.1038/s41467-019-11868-5 10.1021/acs.chemmater.9b02718 10.1016/j.scib.2019.07.003 10.1002/adfm.201806884 10.1021/acs.inorgchem.0c00407 10.1016/j.chemosphere.2018.12.024 10.1002/cssc.201903071 10.1002/adma.201601909 10.3390/molecules25071598 10.1021/ic802117q 10.1021/ja310596a 10.1021/acs.chemrev.7b00542 10.1007/s10853-017-1768-0 10.1002/adma.201804799 10.1021/jacs.5b08212 10.1039/C4CP00523F 10.1002/adma.201705332 10.1038/srep24533 10.1002/chem.201203846 10.1002/anie.201506219 10.1021/jz3008535 10.1016/j.electacta.2015.05.004 10.1021/acscentsci.7b00180 10.1039/C4CS00001C 10.1016/j.electacta.2018.03.186 10.1038/nmat3087 10.1002/smll.202001847 10.1039/C6EE01109H 10.1002/anie.201007987 10.1021/jacs.6b04746 10.1021/acs.chemmater.8b04370 10.1246/cl.1977.1137 10.1002/celc.201902085 10.1039/C8EE00611C 10.1039/C8SC02220H 10.1038/nature11115 10.1039/C9NJ04017J 10.1039/C7MH00358G 10.1039/D0TA00962H 10.1039/C6TA05877A 10.1021/jacs.9b09227 10.1021/jacs.5b10484 10.1021/ic300825s 10.1039/C6CP08495H 10.1016/j.jechem.2020.05.015 10.1021/ja5095099 10.1021/ja505667t 10.1039/C7TA07978H 10.1021/ja510525s 10.1021/jacs.5b12652 10.1038/nature13991 10.1021/jacs.7b10194 10.1039/C7DT01694H 10.1246/cl.1979.305 10.1021/acsami.7b01547 10.1021/acs.jpcc.0c05144 10.1021/jacs.5b08773 10.1021/acs.chemrev.7b00689 10.1039/C8SC04529A 10.1038/s41467-018-06938-z 10.1002/chem.202000160 10.1021/acscentsci.6b00261 10.1021/jacs.9b10772 10.1002/batt.201800093 10.1016/j.chempr.2019.03.002 10.1021/ja028548o 10.1126/science.1224581 10.1021/cr500266a 10.1039/C7CY01653K 10.1021/cr200304e 10.1038/s41560-019-0450-y 10.1021/acs.chemrev.6b00299 10.1002/adma.201707483 10.1021/acs.chemrev.8b00056 10.1073/pnas.1315383110 10.1021/acs.jpclett.9b03897 10.1039/C9CS00163H 10.1039/C5CS00878F 10.1016/j.nanoen.2019.104233 10.1002/adma.201606134 10.1021/cr020443g 10.1021/acsenergylett.9b02756 10.1021/jacs.0c07206 10.1002/smtd.202000085 10.1016/j.electacta.2012.03.132 10.1021/acs.chemrev.7b00373 10.1021/jacs.9b11355 10.1021/acssuschemeng.8b04735 10.1002/adma.201503648 10.1039/C8CP07463A 10.1021/acs.accounts.5b00262 10.1021/acssuschemeng.8b05770 10.1039/C5QI00198F 10.1039/C5EE03694A 10.1039/C7CS00283A 10.1039/D0CS00278J 10.1002/pi.4908 10.1039/C4CS00015C 10.1002/anie.202003842 10.1002/asia.202000083 10.1039/B512982F 10.1016/j.cis.2020.102108 10.1039/C2CS35360A 10.1002/chem.201802585 10.1021/jacs.5b11720 10.1021/ja111042f 10.1002/adma.201502696 10.1002/adma.201900592 10.1021/acsami.8b20142 10.1002/cssc.201701196 10.1039/C2CS35072F 10.1002/aenm.201200013 10.1021/jacs.8b00605 10.1002/chem.201902203 10.1021/ja908488s 10.1002/adma.201704388 10.1038/s41467-019-14237-4 10.1021/acs.chemrev.7b00488 10.1039/C9SC05041H 10.1002/aenm.201301523 10.1021/jacs.6b12404 10.1021/jacs.5b00046 10.1002/adfm.201901301 10.1021/ic302369v 10.1126/science.1093087 10.1021/ja408084j 10.1021/acscatal.9b02583 10.1021/jacs.5b10754 10.1038/s41586-019-1798-7 10.1021/cr200190s 10.1002/anie.201904058 10.1038/s41929-019-0383-7 10.1021/acsami.0c06537 10.1038/nchem.2695 10.1002/smtd.201800415 10.1002/celc.201801859 10.1021/jacs.7b09553 10.1002/anie.202000601 10.1126/science.1120411 10.1016/j.trechm.2020.01.003 10.1021/acs.inorgchem.5b00924 10.1021/acs.chemrev.6b00546 10.1021/jacs.7b08678 10.1002/adma.201504766 10.1002/anie.201604311 10.1126/sciadv.aaw2322 10.1002/adma.201705112 10.1038/s41560-017-0018-7 10.1039/C8CS00376A 10.1002/anie.202006899 10.1021/ja512575v 10.1021/cr2003272 10.1021/jacs.9b02864 10.1039/C9TA07967J 10.1002/anie.201909880 10.1021/ja202138m 10.1021/acscatal.9b04477 10.1021/ja402727d 10.1016/j.ensm.2015.11.005 10.1039/C6TA03059A 10.1021/acsami.7b11229 10.1002/adma.201600108 10.1002/anie.201807996 10.1002/anie.201803262 10.1002/anie.201910309 10.1039/C5EE00762C 10.1002/anie.201907002 10.1021/cr400415k 10.1002/adma.201703663 10.1039/C8SC02294A 10.1021/ja00009a065 10.1126/science.1135844 10.1021/cr300463y 10.1039/c0cc01797c 10.1002/anie.201504830 10.1021/jacs.8b10334 10.1021/acsami.6b16834 10.1016/j.ensm.2018.12.021 10.1038/s41560-018-0308-8 10.1021/acscatal.8b04960 10.1038/s41570-018-0010-1 10.1002/anie.200352564 10.1039/C7CS00315C 10.1038/s41560-019-0355-9 10.1002/cssc.201802765 10.1039/C8EE01991F 10.1002/ejic.201700394 10.1002/anie.201814339 10.1002/celc.201600435 10.1021/acs.chemrev.7b00664 10.1002/anie.201202471 10.1038/s41929-018-0108-3 10.1039/C8EE00977E 10.1021/jacs.7b06459 10.1002/cctc.201600298 10.1016/j.jcis.2020.06.109 10.1038/s41929-018-0182-6 10.1002/aenm.201000010 10.1126/science.7652554 10.1039/C7SE00413C 10.1038/ncomms10942 10.1021/ic3001619 10.1142/S1088424615300013 10.1021/ol034581j 10.1021/ja3004914 10.1021/jacs.8b09521 10.1002/anie.199418391 10.1016/j.ijhydene.2014.09.164 10.1021/acs.chemrev.5b00340 10.1038/s41467-020-16715-6 10.1002/adfm.201803329 10.1039/C7CP06187K 10.1002/slct.201901713 10.1126/science.aal1585 10.1021/jacs.6b07014 10.1021/acs.chemrev.7b00335 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/d0cs01482f |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 2581 |
ExternalDocumentID | 33475099 10_1039_D0CS01482F d0cs01482f |
Genre | Journal Article Review |
GroupedDBID | - 0-7 02 0R 29B 4.4 53G 5GY 70 705 70J 7~J 85S AAEMU AAGNR AAIWI AANOJ ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX COF CS3 DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3I JG M4U N9A O9- OK1 P2P R7B R7D RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 X --- -DZ -~X 0R~ 2WC 6J9 70~ AAHBH AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF ~02 -JG NPM YIN Z5M 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c436t-d9a9e4e5fd004744a5cfb8f724885e8131ecfb8044a1d59cd75ff45ff1cd3e6c3 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Fri Jul 11 06:07:06 EDT 2025 Fri Jul 11 14:46:29 EDT 2025 Mon Jun 30 06:41:44 EDT 2025 Wed Feb 19 02:29:30 EST 2025 Tue Jul 01 04:18:45 EDT 2025 Thu Apr 24 22:53:38 EDT 2025 Sat Jan 08 03:48:19 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c436t-d9a9e4e5fd004744a5cfb8f724885e8131ecfb8044a1d59cd75ff45ff1cd3e6c3 |
Notes | Dr Haoquan Zheng is currently an associate professor in the School of Chemistry and Chemical Engineering at Shaanxi Normal University. He received his BS (2006) and PhD (2011) in applied chemistry from Shanghai Jiao Tong University under the supervision of Professor Shunai Che. He worked as a postdoctoral fellow in the group of Professor Xiaodong Zou at Stockholm University. He moved to his current position in July 2016. His research interest lies in the development of hierarchical porous materials with novel structures and functions for drug delivery and heterogeneous catalysis. Dr Hong-Yan Wang received her PhD in organic chemistry in Chinese Academy of Sciences in 2011. In 2014, she joined the School of Chemistry and Chemical Engineering at Shaanxi Normal University as an associate professor. Her research interest concerns artificial photosynthesis using supramolecular systems, coordination compounds, and semiconductors. Now, she is working on the design of a photochemical device for water splitting, CO 2 reduction with Professor Rong Xu, he joined the School of Chemistry and Chemical Engineering at Shaanxi Normal University in 2014. His current research focuses on catalytic reactions of water splitting. reduction and organic synthesis. Prof. Wei Zhang received his BS (2007) in chemistry from Peking University in Beijing, China and PhD degree (2012) from Nanyang Technological University in Singapore with Professor Rong Xu. After postdoctoral work in photocatalytic CO Prof. Rui Cao received his BS (2003) in chemistry from Peking University in Beijing, China and his PhD (2008) from Emory University in Atlanta, Georgia, USA, with Professor Craig L. Hill. He worked as a Postdoctoral Fellow (2008-2009) at Emory University and was the Dreyfus Postdoctoral Fellow (2009-2011) at Massachusetts Institute of Technology with Professor Stephen J. Lippard. In 2011, he became a professor at Renmin University of China, and transferred to Shaanxi Normal University in 2014. His main research interests lie in bioinorganic chemistry and catalysis for energy-related small molecule activation reactions. He served on the Advisory Board of Chemical Society Reviews since 2019. Dr Zuozhong Liang is currently an associate research fellow in the School of Chemistry and Chemical Engineering at Shaanxi Normal University. He received his BS (2011) from Qufu Normal University and PhD (2016) from Beijing University of Chemical Technology under the supervision of Professor Jian-Feng Chen. In July 2016, he joined the research group of Professor Rui Cao. His research interests focus on the design and development of novel functional nanomaterials for application in renewable-energy-related fields. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1821-9583 0000-0002-1127-9452 0000-0003-3897-0750 0000-0003-3869-4055 0000-0002-6063-9637 |
PMID | 33475099 |
PQID | 2494319583 |
PQPubID | 2047503 |
PageCount | 42 |
ParticipantIDs | proquest_miscellaneous_2524268661 rsc_primary_d0cs01482f proquest_miscellaneous_2479741349 crossref_citationtrail_10_1039_D0CS01482F crossref_primary_10_1039_D0CS01482F pubmed_primary_33475099 proquest_journals_2494319583 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210301 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 3 year: 2021 text: 20210301 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Li (D0CS01482F-(cit345)/*[position()=1]) 2020; 3 Hijazi (D0CS01482F-(cit193)/*[position()=1]) 2014; 136 Li (D0CS01482F-(cit191)/*[position()=1]) 2019; 29 Weekes (D0CS01482F-(cit249)/*[position()=1]) 2018; 51 Jiao (D0CS01482F-(cit287)/*[position()=1]) 2018; 57 Wang (D0CS01482F-(cit258)/*[position()=1]) 2015; 115 Oldacre (D0CS01482F-(cit394)/*[position()=1]) 2017; 139 Zhang (D0CS01482F-(cit274)/*[position()=1]) 2020; 8 Feng (D0CS01482F-(cit174)/*[position()=1]) 2019; 9 Wang (D0CS01482F-(cit219)/*[position()=1]) 2016; 28 Xiang (D0CS01482F-(cit213)/*[position()=1]) 2014; 53 Hu (D0CS01482F-(cit340)/*[position()=1]) 2017; 56 Lu (D0CS01482F-(cit119)/*[position()=1]) 2020; 59 Reier (D0CS01482F-(cit299)/*[position()=1]) 2012; 2 Yoshikawa (D0CS01482F-(cit11)/*[position()=1]) 2015; 115 Li (D0CS01482F-(cit116)/*[position()=1]) 2018; 57 Han (D0CS01482F-(cit350)/*[position()=1]) 2019; 58 Collman (D0CS01482F-(cit50)/*[position()=1]) 2006 Wang (D0CS01482F-(cit20)/*[position()=1]) 2019; 10 Han (D0CS01482F-(cit214)/*[position()=1]) 2017; 139 Boyd (D0CS01482F-(cit393)/*[position()=1]) 2019; 576 Gotico (D0CS01482F-(cit380)/*[position()=1]) 2020; 59 Wang (D0CS01482F-(cit312)/*[position()=1]) 2020; 579 Zagal (D0CS01482F-(cit279)/*[position()=1]) 2016; 55 Park (D0CS01482F-(cit217)/*[position()=1]) 2020; 59 Abdinejad (D0CS01482F-(cit339)/*[position()=1]) 2020; 5 Gong (D0CS01482F-(cit364)/*[position()=1]) 2020; 142 Chen (D0CS01482F-(cit148)/*[position()=1]) 2017; 7 Chen (D0CS01482F-(cit398)/*[position()=1]) 2020; 4 Segura (D0CS01482F-(cit208)/*[position()=1]) 2016; 45 Ryu (D0CS01482F-(cit232)/*[position()=1]) 2019; 31 Wang (D0CS01482F-(cit223)/*[position()=1]) 2016; 28 Meng (D0CS01482F-(cit114)/*[position()=1]) 2019; 9 Lin (D0CS01482F-(cit188)/*[position()=1]) 2015; 349 Wang (D0CS01482F-(cit367)/*[position()=1]) 2019; 25 Guo (D0CS01482F-(cit87)/*[position()=1]) 2020; 12 Peljo (D0CS01482F-(cit43)/*[position()=1]) 2012; 134 Liu (D0CS01482F-(cit323)/*[position()=1]) 2020; 13 Zhang (D0CS01482F-(cit3)/*[position()=1]) 2017; 117 Suga (D0CS01482F-(cit62)/*[position()=1]) 2015; 517 Zhao (D0CS01482F-(cit132)/*[position()=1]) 2018; 2 Lei (D0CS01482F-(cit21)/*[position()=1]) 2020; 24 Artero (D0CS01482F-(cit26)/*[position()=1]) 2011; 50 Guo (D0CS01482F-(cit267)/*[position()=1]) 2018; 57 Zhao (D0CS01482F-(cit218)/*[position()=1]) 2015; 27 Tsukihara (D0CS01482F-(cit9)/*[position()=1]) 1995; 269 Zhang (D0CS01482F-(cit25)/*[position()=1]) 2019; 219 Kadish (D0CS01482F-(cit382)/*[position()=1]) 2006; 100 Zhang (D0CS01482F-(cit104)/*[position()=1]) 2020; 53 Hou (D0CS01482F-(cit289)/*[position()=1]) 2020; 13 Makiura (D0CS01482F-(cit215)/*[position()=1]) 2010; 9 Jia (D0CS01482F-(cit194)/*[position()=1]) 2016; 3 Sun (D0CS01482F-(cit71)/*[position()=1]) 2017; 53 Zuo (D0CS01482F-(cit286)/*[position()=1]) 2019; 58 Cheng (D0CS01482F-(cit158)/*[position()=1]) 2018; 6 Liu (D0CS01482F-(cit319)/*[position()=1]) 2018; 11 Masa (D0CS01482F-(cit56)/*[position()=1]) 2013; 19 Yang (D0CS01482F-(cit333)/*[position()=1]) 2020; 16 Zhao (D0CS01482F-(cit88)/*[position()=1]) 2020; 26 Kornienko (D0CS01482F-(cit186)/*[position()=1]) 2015; 137 Chang (D0CS01482F-(cit378)/*[position()=1]) 2003; 125 Feng (D0CS01482F-(cit403)/*[position()=1]) 2020; 2 Sun (D0CS01482F-(cit391)/*[position()=1]) 2016; 55 Shen (D0CS01482F-(cit276)/*[position()=1]) 2017; 10 Yang (D0CS01482F-(cit145)/*[position()=1]) 2017; 46 Ross (D0CS01482F-(cit242)/*[position()=1]) 2019; 2 Liu (D0CS01482F-(cit44)/*[position()=1]) 2020; 11 Zou (D0CS01482F-(cit160)/*[position()=1]) 2012; 41 Chen (D0CS01482F-(cit172)/*[position()=1]) 2020 Wang (D0CS01482F-(cit357)/*[position()=1]) 2020; 396 Peng (D0CS01482F-(cit322)/*[position()=1]) 2019; 5 Xu (D0CS01482F-(cit280)/*[position()=1]) 2018; 1 Luo (D0CS01482F-(cit239)/*[position()=1]) 2020; 16 Liang (D0CS01482F-(cit254)/*[position()=1]) 2019; 6 Liang (D0CS01482F-(cit256)/*[position()=1]) 2011; 10 Najafpour (D0CS01482F-(cit1)/*[position()=1]) 2016; 116 Zhang (D0CS01482F-(cit381)/*[position()=1]) 2020; 142 Takaishi (D0CS01482F-(cit388)/*[position()=1]) 2009; 48 Yamada (D0CS01482F-(cit37)/*[position()=1]) 2010; 46 Chen (D0CS01482F-(cit175)/*[position()=1]) 2010; 114 Poulos (D0CS01482F-(cit6)/*[position()=1]) 2014; 114 Shen (D0CS01482F-(cit102)/*[position()=1]) 2016; 120 Beyzavi (D0CS01482F-(cit162)/*[position()=1]) 2015; 137 Zhou (D0CS01482F-(cit163)/*[position()=1]) 2020; 142 Xu (D0CS01482F-(cit327)/*[position()=1]) 2014; 39 Zeb Gul Sial (D0CS01482F-(cit222)/*[position()=1]) 2018; 47 Dey (D0CS01482F-(cit105)/*[position()=1]) 2017; 1 Chen (D0CS01482F-(cit404)/*[position()=1]) 2017; 139 Yaghi (D0CS01482F-(cit120)/*[position()=1]) 1995; 378 Li (D0CS01482F-(cit231)/*[position()=1]) 2017; 2 Collman (D0CS01482F-(cit12)/*[position()=1]) 2007; 315 Wurster (D0CS01482F-(cit316)/*[position()=1]) 2016; 138 Abrahams (D0CS01482F-(cit154)/*[position()=1]) 1991; 113 Grimaud (D0CS01482F-(cit307)/*[position()=1]) 2017; 9 Zhong (D0CS01482F-(cit255)/*[position()=1]) 2020; 7 Mittra (D0CS01482F-(cit30)/*[position()=1]) 2013; 52 Kong (D0CS01482F-(cit142)/*[position()=1]) 2020; 49 Lei (D0CS01482F-(cit111)/*[position()=1]) 2016; 6 Liu (D0CS01482F-(cit199)/*[position()=1]) 2019; 43 Froehlich (D0CS01482F-(cit98)/*[position()=1]) 2012; 51 Auwärter (D0CS01482F-(cit2)/*[position()=1]) 2015; 7 Wang (D0CS01482F-(cit314)/*[position()=1]) 2020; 181 Yang (D0CS01482F-(cit356)/*[position()=1]) 2020; 59 Li (D0CS01482F-(cit106)/*[position()=1]) 2017; 10 Miner (D0CS01482F-(cit390)/*[position()=1]) 2016; 7 Sun (D0CS01482F-(cit39)/*[position()=1]) 2014; 43 Xu (D0CS01482F-(cit69)/*[position()=1]) 2017; 19 Zahran (D0CS01482F-(cit89)/*[position()=1]) 2016; 6 Cheung (D0CS01482F-(cit203)/*[position()=1]) 2019; 31 Usov (D0CS01482F-(cit184)/*[position()=1]) 2017; 9 Feng (D0CS01482F-(cit179)/*[position()=1]) 2014; 136 Liang (D0CS01482F-(cit303)/*[position()=1]) 2018; 9 Zhang (D0CS01482F-(cit171)/*[position()=1]) 2016; 55 Nakazono (D0CS01482F-(cit309)/*[position()=1]) 2015; 21 Qin (D0CS01482F-(cit297)/*[position()=1]) 2021; 53 Diercks (D0CS01482F-(cit189)/*[position()=1]) 2018; 140 Jiao (D0CS01482F-(cit149)/*[position()=1]) 2018; 30 Sen (D0CS01482F-(cit82)/*[position()=1]) 2019; 48 Cantillo (D0CS01482F-(cit281)/*[position()=1]) 2016; 4 Feng (D0CS01482F-(cit360)/*[position()=1]) 2020; 270 Smith (D0CS01482F-(cit369)/*[position()=1]) 2018; 57 Cai (D0CS01482F-(cit241)/*[position()=1]) 2017; 4 Davari (D0CS01482F-(cit321)/*[position()=1]) 2018; 2 Huang (D0CS01482F-(cit192)/*[position()=1]) 2019; 7 Park (D0CS01482F-(cit23)/*[position()=1]) 2020; 407 Stock (D0CS01482F-(cit123)/*[position()=1]) 2012; 112 Zheng (D0CS01482F-(cit152)/*[position()=1]) 2016; 138 Adam (D0CS01482F-(cit10)/*[position()=1]) 2018; 118 Ma (D0CS01482F-(cit283)/*[position()=1]) 2015; 52 Jahan (D0CS01482F-(cit268)/*[position()=1]) 2012; 134 Rasheed (D0CS01482F-(cit146)/*[position()=1]) 2020; 25 Wu (D0CS01482F-(cit73)/*[position()=1]) 2019; 575 Cai (D0CS01482F-(cit263)/*[position()=1]) 2016; 3 Costentin (D0CS01482F-(cit76)/*[position()=1]) 2013; 42 Brezny (D0CS01482F-(cit32)/*[position()=1]) 2020; 142 Chang (D0CS01482F-(cit42)/*[position()=1]) 2000 Dai (D0CS01482F-(cit198)/*[position()=1]) 2016; 45 Li (D0CS01482F-(cit54)/*[position()=1]) 2010; 132 Huang (D0CS01482F-(cit375)/*[position()=1]) 2017; 139 Fateeva (D0CS01482F-(cit185)/*[position()=1]) 2012; 51 Xu (D0CS01482F-(cit392)/*[position()=1]) 2013; 135 Zhang (D0CS01482F-(cit293)/*[position()=1]) 2020; 32 Fang (D0CS01482F-(cit49)/*[position()=1]) 2017; 117 Jin (D0CS01482F-(cit251)/*[position()=1]) 2018; 118 Huang (D0CS01482F-(cit311)/*[position()=1]) 2018; 8 Xu (D0CS01482F-(cit118)/*[position()=1]) 2019; 55 Kirchon (D0CS01482F-(cit121)/*[position()=1]) 2018; 47 Wang (D0CS01482F-(cit225)/*[position()=1]) 2019; 31 Zhong (D0CS01482F-(cit236)/*[position()=1]) 2019; 2 Choi (D0CS01482F-(cit343)/*[position()=1]) 2018; 8 Zhong (D0CS01482F-(cit298)/*[position()=1]) 2019; 58 Lei (D0CS01482F-(cit22)/*[position()=1]) 2015; 5 Feng (D0CS01482F-(cit178)/*[position()=1]) 2013; 135 Li (D0CS01482F-(cit240)/*[position()=1]) 2013; 4 Fukuzumi (D0CS01482F-(cit228)/*[position()=1]) 2012; 82 Zhao (D0CS01482F-(cit266)/*[position()=1]) 2019; 30 Fang (D0CS01482F-(cit363)/*[position()=1]) 2020; 142 McGuire Jr. (D0CS01482F-(cit41)/*[position()=1]) 2010; 1 Fukuzumi (D0CS01482F-(cit334)/*[position()=1]) 2018; 9 Li (D0CS01482F-(cit107)/*[position()=1]) 2019; 12 Costentin (D0CS01482F-(cit81)/*[position()=1]) 2015; 48 Chen (D0CS01482F-(cit291)/*[position()=1]) 2018; 2 Oldacre (D0CS01482F-(cit395)/*[position()=1]) 2018; 24 Zhou (D0CS01482F-(cit147)/*[position()=1]) 2017; 46 Guo (D0CS01482F-(cit344)/*[position()=1]) 2019; 141 Meunier (D0CS01482F-(cit7)/*[position()=1]) 2004; 104 Liberman (D0CS01482F-(cit377)/*[position()=1]) 2020; 142 Li (D0CS01482F-(cit238)/*[position()=1]) 2014; 43 Gewirth (D0CS01482F-(cit250)/*[position()=1]) 2018; 118 Choi (D0CS01482F-(cit338)/*[position()=1]) 2019; 12 Li (D0CS01482F-(cit245)/*[position()=1]) 2018; 1 Lin (D0CS01482F-(cit294)/*[position()=1]) 2015; 27 Handoko (D0CS01482F-(cit401)/*[position()=1]) 2018; 1 Wannakao (D0CS01482F-(cit379)/*[position()=1]) 2017; 56 Huang (D0CS01482F-(cit284)/*[position()=1]) 2020; 10 Dogutan (D0CS01482F-(cit70)/*[position()=1]) 2011; 133 Chng (D0CS01482F-(cit27)/*[position()=1]) 2003; 5 Margarit (D0CS01482F-(cit85)/*[position()=1]) 2019; 38 Wu (D0CS01482F-(cit212)/*[position()=1]) 2014; 26 Wan (D0CS01482F-(cit262)/*[position()=1]) 2020; 10 Wu (D0CS01482F-(cit130)/*[position()=1]) 2017; 3 Maurin (D0CS01482F-(cit336)/*[position()=1]) 2016; 138 Gonglach (D0CS01482F-(cit337)/*[position()=1]) 2019; 10 Xie (D0CS01482F-(cit112)/*[position()=1]) 2019; 58 Tei (D0CS01482F-(cit57)/*[position()=1]) 2017 Hu (D0CS01482F-(cit210)/*[position()=1]) 2016; 52 Passard (D0CS01482F-(cit46)/*[position()=1]) 2018; 8 Cao (D0CS01482F-(cit229)/*[position()=1]) 2012; 2 Wang (D0CS01482F-(cit261)/*[position()=1]) 2019; 2 Lu (D0CS01482F-(cit349)/*[position()=1]) 2019; 29 Song (D0CS01482F-(cit131)/*[position()=1]) 2019; 6 Jiao (D0CS01482F-(cit358)/*[position()=1]) 2020; 59 Tang (D0CS01482F-(cit227)/*[position()=1]) 2020; 59 Hao (D0CS01482F-(cit165)/*[position()=1]) 2019; 31 Zhu (D0CS01482F-(cit372)/*[position()= |
References_xml | – volume: 46 start-page: 4774 year: 2017 ident: D0CS01482F-(cit145)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00724D – volume: 59 start-page: 5326 year: 2020 ident: D0CS01482F-(cit204)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201915537 – volume: 181 start-page: 108568 year: 2020 ident: D0CS01482F-(cit314)/*[position()=1] publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2020.108568 – volume: 4 start-page: 15 year: 2020 ident: D0CS01482F-(cit257)/*[position()=1] publication-title: Sustainable Energy Fuels doi: 10.1039/C9SE00460B – volume: 57 start-page: 3493 year: 2018 ident: D0CS01482F-(cit170)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201800817 – volume: 137 start-page: 13624 year: 2015 ident: D0CS01482F-(cit162)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08440 – volume: 3 start-page: 478 year: 2020 ident: D0CS01482F-(cit243)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-020-0450-0 – volume: 349 start-page: 1208 year: 2015 ident: D0CS01482F-(cit188)/*[position()=1] publication-title: Science doi: 10.1126/science.aac8343 – volume: 118 start-page: 4631 year: 2018 ident: D0CS01482F-(cit74)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00459 – volume: 5 start-page: 5145 year: 2015 ident: D0CS01482F-(cit22)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.5b00666 – volume: 4 start-page: 1700194 year: 2017 ident: D0CS01482F-(cit365)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201700194 – volume: 341 start-page: 1230444 year: 2013 ident: D0CS01482F-(cit124)/*[position()=1] publication-title: Science doi: 10.1126/science.1230444 – volume: 2 start-page: 1242 year: 2018 ident: D0CS01482F-(cit291)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2018.06.019 – volume: 47 start-page: 6175 year: 2018 ident: D0CS01482F-(cit222)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00113H – volume: 29 start-page: 1604685 year: 2017 ident: D0CS01482F-(cit235)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201604685 – start-page: 1355 year: 2000 ident: D0CS01482F-(cit42)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b001620i – volume: 142 start-page: 12382 year: 2020 ident: D0CS01482F-(cit402)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c04758 – volume: 49 start-page: 3565 year: 2020 ident: D0CS01482F-(cit129)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00017E – volume: 45 start-page: 61 year: 2016 ident: D0CS01482F-(cit198)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C5DT04025F – volume: 53 start-page: 6496 year: 2017 ident: D0CS01482F-(cit187)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC02113E – volume: 1 start-page: 411 year: 2010 ident: D0CS01482F-(cit41)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/c0sc00281j – volume: 53 start-page: 255 year: 2020 ident: D0CS01482F-(cit104)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00496 – volume: 139 start-page: 8705 year: 2017 ident: D0CS01482F-(cit209)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04141 – volume: 51 start-page: 910 year: 2018 ident: D0CS01482F-(cit249)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00010 – volume: 56 start-page: 6468 year: 2017 ident: D0CS01482F-(cit340)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201701104 – volume: 2 start-page: 578 year: 2019 ident: D0CS01482F-(cit261)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-019-0304-9 – volume: 114 start-page: 8633 year: 2010 ident: D0CS01482F-(cit175)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp101011f – volume: 46 start-page: 6088 year: 2017 ident: D0CS01482F-(cit15)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00248C – volume: 48 start-page: 7631 year: 2012 ident: D0CS01482F-(cit31)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c2cc32832a – volume: 9 start-page: 565 year: 2010 ident: D0CS01482F-(cit215)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2769 – volume: 59 start-page: 16098 year: 2020 ident: D0CS01482F-(cit100)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202005242 – volume: 38 start-page: 1219 year: 2019 ident: D0CS01482F-(cit85)/*[position()=1] publication-title: Organometallics doi: 10.1021/acs.organomet.8b00334 – volume: 10 start-page: 2199 year: 2019 ident: D0CS01482F-(cit355)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC04344B – volume: 5 start-page: 6302 year: 2015 ident: D0CS01482F-(cit181)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.5b01767 – volume: 1 start-page: 384 year: 2019 ident: D0CS01482F-(cit361)/*[position()=1] publication-title: CCS Chem. doi: 10.31635/ccschem.019.20190011 – volume: 139 start-page: 11760 year: 2017 ident: D0CS01482F-(cit115)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04122 – volume: 141 start-page: 19560 year: 2019 ident: D0CS01482F-(cit195)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b10787 – volume: 54 start-page: 7519 year: 2018 ident: D0CS01482F-(cit275)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC02646G – volume: 58 start-page: 12711 year: 2019 ident: D0CS01482F-(cit350)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201907399 – volume: 378 start-page: 703 year: 1995 ident: D0CS01482F-(cit120)/*[position()=1] publication-title: Nature doi: 10.1038/378703a0 – volume: 100 start-page: 858 year: 2006 ident: D0CS01482F-(cit382)/*[position()=1] publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2006.01.010 – volume: 140 start-page: 1116 year: 2018 ident: D0CS01482F-(cit189)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11940 – volume: 3 start-page: eaap9252 year: 2017 ident: D0CS01482F-(cit130)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.aap9252 – volume: 158 start-page: B139 year: 2011 ident: D0CS01482F-(cit282)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.3521317 – volume: 55 start-page: 12647 year: 2019 ident: D0CS01482F-(cit118)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC06916J – volume: 28 start-page: 4375 year: 2016 ident: D0CS01482F-(cit306)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b01370 – volume: 59 start-page: 8941 year: 2020 ident: D0CS01482F-(cit17)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202002311 – volume: 57 start-page: 9684 year: 2018 ident: D0CS01482F-(cit369)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201803873 – volume: 300 start-page: 1127 year: 2003 ident: D0CS01482F-(cit138)/*[position()=1] publication-title: Science doi: 10.1126/science.1083440 – volume: 136 start-page: 6348 year: 2014 ident: D0CS01482F-(cit193)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500984k – volume: 37 start-page: 3397 year: 1998 ident: D0CS01482F-(cit14)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/(SICI)1521-3773(19981231)37:24<3397::AID-ANIE3397>3.0.CO;2-N – volume: 52 start-page: 53 year: 2015 ident: D0CS01482F-(cit283)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2015.01.021 – volume: 4 start-page: 1688 year: 2020 ident: D0CS01482F-(cit398)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2020.07.009 – volume: 132 start-page: 17056 year: 2010 ident: D0CS01482F-(cit54)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja106217u – volume: 118 start-page: 10840 year: 2018 ident: D0CS01482F-(cit10)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00074 – volume: 10 start-page: 9692 year: 2019 ident: D0CS01482F-(cit83)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC02711D – volume: 365 start-page: 367 year: 2019 ident: D0CS01482F-(cit347)/*[position()=1] publication-title: Science doi: 10.1126/science.aax4608 – volume: 137 start-page: 5461 year: 2015 ident: D0CS01482F-(cit18)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b00914 – volume: 120 start-page: 15714 year: 2016 ident: D0CS01482F-(cit102)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b10763 – volume: 7 start-page: 105 year: 2015 ident: D0CS01482F-(cit2)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2159 – volume: 2 start-page: 1765 year: 2012 ident: D0CS01482F-(cit299)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/cs3003098 – volume: 7 start-page: 13461 year: 2016 ident: D0CS01482F-(cit207)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms13461 – volume: 4 start-page: 1805 year: 2013 ident: D0CS01482F-(cit240)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms2812 – volume: 10 start-page: 2308 year: 2019 ident: D0CS01482F-(cit20)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC05247F – volume: 51 start-page: 8890 year: 2012 ident: D0CS01482F-(cit51)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic300886s – volume: 142 start-page: 14548 year: 2020 ident: D0CS01482F-(cit351)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05909 – volume: 53 start-page: 6195 year: 2017 ident: D0CS01482F-(cit71)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC02400B – volume: 142 start-page: 12515 year: 2020 ident: D0CS01482F-(cit363)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05530 – volume: 6 start-page: 6429 year: 2016 ident: D0CS01482F-(cit111)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b01579 – volume: 4 start-page: 3848 year: 2020 ident: D0CS01482F-(cit278)/*[position()=1] publication-title: Sustainable Energy Fuels doi: 10.1039/D0SE00271B – volume: 8 start-page: 1801280 year: 2018 ident: D0CS01482F-(cit343)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801280 – volume: 1 start-page: 0087 year: 2017 ident: D0CS01482F-(cit373)/*[position()=1] publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-017-0087 – volume: 1 start-page: 565 year: 2019 ident: D0CS01482F-(cit230)/*[position()=1] publication-title: Matter doi: 10.1016/j.matt.2019.05.008 – volume: 51 start-page: 10307 year: 2012 ident: D0CS01482F-(cit180)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201204475 – volume: 574 start-page: 81 year: 2019 ident: D0CS01482F-(cit330)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-019-1603-7 – volume: 141 start-page: 8315 year: 2019 ident: D0CS01482F-(cit35)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02640 – volume: 2 start-page: 52 year: 2017 ident: D0CS01482F-(cit136)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2016.12.002 – volume: 141 start-page: 7665 year: 2019 ident: D0CS01482F-(cit310)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b01229 – volume: 49 start-page: 2378 year: 2020 ident: D0CS01482F-(cit142)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00880B – volume: 30 start-page: 911 year: 2019 ident: D0CS01482F-(cit266)/*[position()=1] publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2019.03.026 – volume: 8 start-page: 14675 year: 2017 ident: D0CS01482F-(cit368)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms14675 – volume: 18 start-page: 345 year: 2016 ident: D0CS01482F-(cit176)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C5CE02106E – ident: D0CS01482F-(cit64)/*[position()=1] publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(20)63681-6 – volume: 54 start-page: 3465 year: 2015 ident: D0CS01482F-(cit359)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201410738 – volume: 114 start-page: 11863 year: 2014 ident: D0CS01482F-(cit16)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr400572f – volume: 1 start-page: 339 year: 2018 ident: D0CS01482F-(cit280)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-018-0063-z – volume: 142 start-page: 14848 year: 2020 ident: D0CS01482F-(cit163)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c07257 – volume: 7 start-page: 1143 year: 2017 ident: D0CS01482F-(cit400)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b01815 – volume: 26 start-page: 4007 year: 2020 ident: D0CS01482F-(cit88)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201903064 – volume: 51 start-page: 2730 year: 2018 ident: D0CS01482F-(cit396)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00302 – volume: 137 start-page: 13535 year: 2015 ident: D0CS01482F-(cit36)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06834 – volume: 3 start-page: 4954 year: 2015 ident: D0CS01482F-(cit264)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06231K – volume: 58 start-page: 18883 year: 2019 ident: D0CS01482F-(cit112)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201911441 – volume: 373 start-page: 22 year: 2018 ident: D0CS01482F-(cit140)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.09.001 – volume: 55 start-page: 5457 year: 2016 ident: D0CS01482F-(cit19)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201510001 – volume: 16 start-page: 1883 year: 2014 ident: D0CS01482F-(cit68)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C3CP54361G – volume: 59 start-page: 4902 year: 2020 ident: D0CS01482F-(cit295)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201916131 – volume: 7 start-page: 7726 year: 2017 ident: D0CS01482F-(cit389)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b02647 – volume: 9 start-page: 3895 year: 2019 ident: D0CS01482F-(cit84)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.9b00529 – volume: 16 start-page: 2001171 year: 2020 ident: D0CS01482F-(cit239)/*[position()=1] publication-title: Small doi: 10.1002/smll.202001171 – volume: 43 start-page: 10809 year: 2014 ident: D0CS01482F-(cit39)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C4DT01072H – volume: 10 start-page: 5979 year: 2020 ident: D0CS01482F-(cit262)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.0c01085 – volume: 24 start-page: 1361 year: 2020 ident: D0CS01482F-(cit21)/*[position()=1] publication-title: J. Porphyrins phthalocyanines doi: 10.1142/S1088424620500157 – volume: 15 start-page: 1970 year: 2020 ident: D0CS01482F-(cit326)/*[position()=1] publication-title: Chem. – Asian J. doi: 10.1002/asia.202000438 – volume: 12 start-page: 747 year: 2019 ident: D0CS01482F-(cit338)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE03403F – volume: 142 start-page: 13426 year: 2020 ident: D0CS01482F-(cit381)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c03861 – volume: 21 start-page: 6723 year: 2015 ident: D0CS01482F-(cit309)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201500716 – volume: 58 start-page: 6595 year: 2019 ident: D0CS01482F-(cit341)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201900499 – volume: 1 start-page: 4662 year: 2018 ident: D0CS01482F-(cit182)/*[position()=1] publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00797 – volume: 1 start-page: 0098 year: 2017 ident: D0CS01482F-(cit105)/*[position()=1] publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-017-0098 – volume: 7 start-page: 5575 year: 2019 ident: D0CS01482F-(cit192)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00040B – volume: 31 start-page: 1804784 year: 2019 ident: D0CS01482F-(cit232)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201804784 – volume: 13 start-page: 1658 year: 2020 ident: D0CS01482F-(cit289)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C9EE04040D – volume: 5 start-page: 979 year: 2020 ident: D0CS01482F-(cit339)/*[position()=1] publication-title: ChemistrySelect doi: 10.1002/slct.201904580 – volume: 48 start-page: 2216 year: 2019 ident: D0CS01482F-(cit103)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00897C – volume: 3 start-page: 883 year: 2018 ident: D0CS01482F-(cit288)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00245 – volume: 270 start-page: 118908 year: 2020 ident: D0CS01482F-(cit360)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.118908 – volume: 2 start-page: 1330 year: 2019 ident: D0CS01482F-(cit90)/*[position()=1] publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b01900 – volume: 5 start-page: 3242 year: 2014 ident: D0CS01482F-(cit371)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms4242 – volume: 396 start-page: 125255 year: 2020 ident: D0CS01482F-(cit357)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125255 – volume: 9 start-page: 4551 year: 2019 ident: D0CS01482F-(cit114)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.9b00213 – volume: 134 start-page: 6707 year: 2012 ident: D0CS01482F-(cit268)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211433h – volume: 27 start-page: 3431 year: 2015 ident: D0CS01482F-(cit294)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201500727 – volume: 2 start-page: 1370 year: 2017 ident: D0CS01482F-(cit231)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00119 – volume: 46 start-page: 6497 year: 2017 ident: D0CS01482F-(cit4)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C7DT00823F – volume: 59 start-page: 22451 year: 2020 ident: D0CS01482F-(cit380)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202010859 – volume: 47 start-page: 172 year: 2018 ident: D0CS01482F-(cit253)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.02.015 – volume: 2 start-page: 231 year: 2019 ident: D0CS01482F-(cit271)/*[position()=1] publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-019-00031-9 – volume: 43 start-page: 5468 year: 2014 ident: D0CS01482F-(cit122)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60472A – volume: 141 start-page: 17431 year: 2019 ident: D0CS01482F-(cit405)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09502 – volume: 2 start-page: 2235 year: 2018 ident: D0CS01482F-(cit132)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2018.09.019 – volume: 45 start-page: 517 year: 2016 ident: D0CS01482F-(cit277)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00670H – volume: 575 start-page: 639 year: 2019 ident: D0CS01482F-(cit73)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-019-1760-8 – volume: 12 start-page: 1591 year: 2020 ident: D0CS01482F-(cit87)/*[position()=1] publication-title: ChemCatChem doi: 10.1002/cctc.201902034 – volume: 55 start-page: 14310 year: 2016 ident: D0CS01482F-(cit171)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201608597 – volume: 57 start-page: 12567 year: 2018 ident: D0CS01482F-(cit267)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201808226 – volume: 19 start-page: 266 year: 2020 ident: D0CS01482F-(cit331)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/s41563-020-0610-2 – volume: 19 start-page: 92 year: 2015 ident: D0CS01482F-(cit13)/*[position()=1] publication-title: J. Porphyrins phthalocyanines doi: 10.1142/S1088424615300049 – volume: 407 start-page: 213157 year: 2020 ident: D0CS01482F-(cit23)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.213157 – volume: 53 start-page: 2433 year: 2014 ident: D0CS01482F-(cit213)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201308896 – start-page: 4815 year: 2019 ident: D0CS01482F-(cit168)/*[position()=1] publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201900940 – volume: 52 start-page: 5864 year: 2016 ident: D0CS01482F-(cit210)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC00982D – volume: 27 start-page: 4586 year: 2015 ident: D0CS01482F-(cit315)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b00882 – volume: 59 start-page: 20589 year: 2020 ident: D0CS01482F-(cit358)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202008787 – volume: 2 start-page: 198 year: 2019 ident: D0CS01482F-(cit244)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-019-0235-5 – volume: 52 start-page: 12084 year: 2016 ident: D0CS01482F-(cit342)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC05430G – volume: 48 start-page: 5965 year: 2019 ident: D0CS01482F-(cit82)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C8DT03850C – volume: 57 start-page: 13187 year: 2018 ident: D0CS01482F-(cit273)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201807854 – volume: 6 start-page: 20254 year: 2018 ident: D0CS01482F-(cit158)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA06785F – volume: 41 start-page: 3879 year: 2012 ident: D0CS01482F-(cit160)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c2dt11989g – volume: 115 start-page: 9511 year: 2011 ident: D0CS01482F-(cit52)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp101036j – volume: 32 start-page: 1904037 year: 2020 ident: D0CS01482F-(cit293)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201904037 – volume: 8 start-page: 40054 year: 2018 ident: D0CS01482F-(cit311)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C8RA08338J – volume: 21 start-page: 1348 year: 2016 ident: D0CS01482F-(cit166)/*[position()=1] publication-title: Molecules doi: 10.3390/molecules21101348 – volume: 2 start-page: 648 year: 2019 ident: D0CS01482F-(cit242)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-019-0306-7 – volume: 8 start-page: 8671 year: 2018 ident: D0CS01482F-(cit46)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.8b01944 – volume: 49 start-page: 6325 year: 2013 ident: D0CS01482F-(cit59)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c3cc43031f – volume: 114 start-page: 10174 year: 2010 ident: D0CS01482F-(cit101)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp1012335 – volume: 142 start-page: 4108 year: 2020 ident: D0CS01482F-(cit32)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13654 – volume: 46 start-page: 337 year: 2017 ident: D0CS01482F-(cit301)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00328A – volume: 140 start-page: 9444 year: 2018 ident: D0CS01482F-(cit28)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02983 – volume: 59 start-page: 8218 year: 2020 ident: D0CS01482F-(cit217)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201916595 – volume: 9 start-page: 4320 year: 2019 ident: D0CS01482F-(cit48)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.9b00310 – volume: 115 start-page: 3433 year: 2015 ident: D0CS01482F-(cit258)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr500519c – volume: 10 start-page: 6332 year: 2020 ident: D0CS01482F-(cit91)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.0c00559 – volume: 10 start-page: 1449 year: 2017 ident: D0CS01482F-(cit276)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-016-1400-7 – volume: 26 start-page: 1450 year: 2014 ident: D0CS01482F-(cit212)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201304147 – volume: 31 start-page: 1805126 year: 2019 ident: D0CS01482F-(cit225)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201805126 – volume: 49 start-page: 2381 year: 2020 ident: D0CS01482F-(cit77)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C9DT04709C – volume: 2 start-page: 100029 year: 2020 ident: D0CS01482F-(cit387)/*[position()=1] publication-title: EnergyChem doi: 10.1016/j.enchem.2020.100029 – volume: 343 start-page: 66 year: 2014 ident: D0CS01482F-(cit386)/*[position()=1] publication-title: Science doi: 10.1126/science.1246738 – volume: 369 start-page: 727 year: 1994 ident: D0CS01482F-(cit159)/*[position()=1] publication-title: Nature doi: 10.1038/369727a0 – volume: 9 start-page: 1900090 year: 2019 ident: D0CS01482F-(cit78)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900090 – volume: 31 start-page: 1806599 year: 2019 ident: D0CS01482F-(cit167)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201806599 – volume: 49 start-page: 2215 year: 2020 ident: D0CS01482F-(cit300)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00869A – volume: 142 start-page: 15386 year: 2020 ident: D0CS01482F-(cit201)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c06329 – volume: 49 start-page: 4839 year: 2011 ident: D0CS01482F-(cit53)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2011.07.004 – volume: 38 start-page: 283 year: 2005 ident: D0CS01482F-(cit156)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar040173j – volume: 47 start-page: 8611 year: 2018 ident: D0CS01482F-(cit121)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00688A – volume: 56 start-page: 7200 year: 2017 ident: D0CS01482F-(cit379)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b00839 – volume: 116 start-page: 3594 year: 2016 ident: D0CS01482F-(cit259)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00462 – volume: 13 start-page: 374 year: 2020 ident: D0CS01482F-(cit247)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03660A – volume: 10 start-page: 6579 year: 2020 ident: D0CS01482F-(cit284)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.0c01459 – volume: 59 start-page: 15844 year: 2020 ident: D0CS01482F-(cit108)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202003836 – volume: 140 start-page: 16544 year: 2018 ident: D0CS01482F-(cit161)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08088 – volume: 6 start-page: 1801410 year: 2019 ident: D0CS01482F-(cit131)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201801410 – volume: 53 start-page: 1056 year: 2020 ident: D0CS01482F-(cit34)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00044 – volume: 2 start-page: 1308 year: 2017 ident: D0CS01482F-(cit133)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00267 – volume: 52 start-page: 14317 year: 2013 ident: D0CS01482F-(cit30)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic402297f – volume: 10 start-page: 3864 year: 2019 ident: D0CS01482F-(cit337)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-11868-5 – volume: 31 start-page: 8100 year: 2019 ident: D0CS01482F-(cit165)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b02718 – volume: 64 start-page: 1158 year: 2019 ident: D0CS01482F-(cit376)/*[position()=1] publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.07.003 – volume: 29 start-page: 1806884 year: 2019 ident: D0CS01482F-(cit349)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806884 – volume: 59 start-page: 6301 year: 2020 ident: D0CS01482F-(cit366)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c00407 – volume: 219 start-page: 617 year: 2019 ident: D0CS01482F-(cit25)/*[position()=1] publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.12.024 – volume: 13 start-page: 1529 year: 2020 ident: D0CS01482F-(cit323)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201903071 – volume: 28 start-page: 10117 year: 2016 ident: D0CS01482F-(cit223)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201601909 – volume: 25 start-page: 1598 year: 2020 ident: D0CS01482F-(cit146)/*[position()=1] publication-title: Molecules doi: 10.3390/molecules25071598 – volume: 48 start-page: 9048 year: 2009 ident: D0CS01482F-(cit388)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic802117q – volume: 135 start-page: 862 year: 2013 ident: D0CS01482F-(cit362)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja310596a – volume: 118 start-page: 2340 year: 2018 ident: D0CS01482F-(cit45)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00542 – volume: 53 start-page: 3624 year: 2018 ident: D0CS01482F-(cit200)/*[position()=1] publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-1768-0 – volume: 31 start-page: 1804799 year: 2019 ident: D0CS01482F-(cit221)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201804799 – volume: 137 start-page: 14129 year: 2015 ident: D0CS01482F-(cit186)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08212 – volume: 16 start-page: 11224 year: 2014 ident: D0CS01482F-(cit58)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP00523F – volume: 30 start-page: 1705332 year: 2018 ident: D0CS01482F-(cit260)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201705332 – volume: 6 start-page: 24533 year: 2016 ident: D0CS01482F-(cit89)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep24533 – volume: 19 start-page: 9644 year: 2013 ident: D0CS01482F-(cit56)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201203846 – volume: 55 start-page: 3566 year: 2016 ident: D0CS01482F-(cit391)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201506219 – volume: 3 start-page: 2315 year: 2012 ident: D0CS01482F-(cit72)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz3008535 – volume: 171 start-page: 81 year: 2015 ident: D0CS01482F-(cit55)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.05.004 – volume: 3 start-page: 853 year: 2017 ident: D0CS01482F-(cit397)/*[position()=1] publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00180 – volume: 43 start-page: 5841 year: 2014 ident: D0CS01482F-(cit117)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00001C – volume: 271 start-page: 526 year: 2018 ident: D0CS01482F-(cit304)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.03.186 – volume: 10 start-page: 780 year: 2011 ident: D0CS01482F-(cit256)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3087 – volume: 16 start-page: 2001847 year: 2020 ident: D0CS01482F-(cit333)/*[position()=1] publication-title: Small doi: 10.1002/smll.202001847 – volume: 9 start-page: 2257 year: 2016 ident: D0CS01482F-(cit320)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01109H – volume: 50 start-page: 7238 year: 2011 ident: D0CS01482F-(cit26)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201007987 – volume: 138 start-page: 8076 year: 2016 ident: D0CS01482F-(cit96)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04746 – volume: 31 start-page: 1908 year: 2019 ident: D0CS01482F-(cit203)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b04370 – start-page: 1137 year: 1977 ident: D0CS01482F-(cit95)/*[position()=1] publication-title: Chem. Lett. doi: 10.1246/cl.1977.1137 – volume: 7 start-page: 1107 year: 2020 ident: D0CS01482F-(cit255)/*[position()=1] publication-title: ChemElectroChem doi: 10.1002/celc.201902085 – volume: 11 start-page: 1736 year: 2018 ident: D0CS01482F-(cit319)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00611C – volume: 9 start-page: 6017 year: 2018 ident: D0CS01482F-(cit334)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC02220H – volume: 486 start-page: 43 year: 2012 ident: D0CS01482F-(cit224)/*[position()=1] publication-title: Nature doi: 10.1038/nature11115 – volume: 43 start-page: 16907 year: 2019 ident: D0CS01482F-(cit199)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C9NJ04017J – volume: 4 start-page: 945 year: 2017 ident: D0CS01482F-(cit241)/*[position()=1] publication-title: Mater. Horiz. doi: 10.1039/C7MH00358G – volume: 8 start-page: 9536 year: 2020 ident: D0CS01482F-(cit274)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/D0TA00962H – volume: 4 start-page: 16818 year: 2016 ident: D0CS01482F-(cit183)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA05877A – volume: 141 start-page: 17875 year: 2019 ident: D0CS01482F-(cit344)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09227 – volume: 138 start-page: 3623 year: 2016 ident: D0CS01482F-(cit316)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10484 – volume: 51 start-page: 6443 year: 2012 ident: D0CS01482F-(cit177)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic300825s – volume: 19 start-page: 9755 year: 2017 ident: D0CS01482F-(cit69)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP08495H – volume: 53 start-page: 77 year: 2021 ident: D0CS01482F-(cit297)/*[position()=1] publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.05.015 – volume: 136 start-page: 16132 year: 2014 ident: D0CS01482F-(cit372)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5095099 – volume: 136 start-page: 12544 year: 2014 ident: D0CS01482F-(cit33)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja505667t – volume: 6 start-page: 1188 year: 2018 ident: D0CS01482F-(cit318)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA07978H – volume: 136 start-page: 17714 year: 2014 ident: D0CS01482F-(cit179)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja510525s – volume: 138 start-page: 2492 year: 2016 ident: D0CS01482F-(cit336)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b12652 – volume: 517 start-page: 99 year: 2015 ident: D0CS01482F-(cit62)/*[position()=1] publication-title: Nature doi: 10.1038/nature13991 – volume: 139 start-page: 17269 year: 2017 ident: D0CS01482F-(cit214)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10194 – volume: 46 start-page: 9344 year: 2017 ident: D0CS01482F-(cit269)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C7DT01694H – start-page: 305 year: 1979 ident: D0CS01482F-(cit94)/*[position()=1] publication-title: Chem. Lett. doi: 10.1246/cl.1979.305 – volume: 9 start-page: 33539 year: 2017 ident: D0CS01482F-(cit184)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b01547 – volume: 124 start-page: 16324 year: 2020 ident: D0CS01482F-(cit109)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c05144 – volume: 137 start-page: 13440 year: 2015 ident: D0CS01482F-(cit169)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08773 – volume: 118 start-page: 6337 year: 2018 ident: D0CS01482F-(cit251)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00689 – volume: 10 start-page: 2613 year: 2019 ident: D0CS01482F-(cit65)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC04529A – volume: 9 start-page: 4466 year: 2018 ident: D0CS01482F-(cit196)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-06938-z – volume: 26 start-page: 3034 year: 2020 ident: D0CS01482F-(cit93)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.202000160 – volume: 2 start-page: 850 year: 2016 ident: D0CS01482F-(cit47)/*[position()=1] publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.6b00261 – volume: 142 start-page: 1895 year: 2020 ident: D0CS01482F-(cit110)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b10772 – volume: 2 start-page: 272 year: 2019 ident: D0CS01482F-(cit236)/*[position()=1] publication-title: Batteries Supercaps doi: 10.1002/batt.201800093 – volume: 5 start-page: 1486 year: 2019 ident: D0CS01482F-(cit220)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2019.03.002 – volume: 125 start-page: 1866 year: 2003 ident: D0CS01482F-(cit378)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja028548o – volume: 338 start-page: 90 year: 2012 ident: D0CS01482F-(cit79)/*[position()=1] publication-title: Science doi: 10.1126/science.1224581 – volume: 115 start-page: 1936 year: 2015 ident: D0CS01482F-(cit11)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr500266a – volume: 7 start-page: 4893 year: 2017 ident: D0CS01482F-(cit148)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY01653K – volume: 112 start-page: 933 year: 2012 ident: D0CS01482F-(cit123)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200304e – volume: 4 start-page: 732 year: 2019 ident: D0CS01482F-(cit246)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-019-0450-y – volume: 117 start-page: 3717 year: 2017 ident: D0CS01482F-(cit3)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00299 – volume: 30 start-page: 1707483 year: 2018 ident: D0CS01482F-(cit328)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201707483 – volume: 118 start-page: 6189 year: 2018 ident: D0CS01482F-(cit211)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00056 – volume: 110 start-page: 15579 year: 2013 ident: D0CS01482F-(cit60)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1315383110 – volume: 11 start-page: 1890 year: 2020 ident: D0CS01482F-(cit86)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b03897 – volume: 48 start-page: 5310 year: 2019 ident: D0CS01482F-(cit332)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00163H – volume: 45 start-page: 5635 year: 2016 ident: D0CS01482F-(cit208)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00878F – volume: 67 start-page: 104233 year: 2020 ident: D0CS01482F-(cit202)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104233 – volume: 29 start-page: 1606134 year: 2017 ident: D0CS01482F-(cit153)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201606134 – volume: 104 start-page: 3947 year: 2004 ident: D0CS01482F-(cit7)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr020443g – volume: 5 start-page: 1005 year: 2020 ident: D0CS01482F-(cit354)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02756 – volume: 142 start-page: 16723 year: 2020 ident: D0CS01482F-(cit364)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c07206 – volume: 4 start-page: 2000085 year: 2020 ident: D0CS01482F-(cit197)/*[position()=1] publication-title: Small Methods doi: 10.1002/smtd.202000085 – volume: 82 start-page: 493 year: 2012 ident: D0CS01482F-(cit228)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.03.132 – volume: 118 start-page: 2491 year: 2018 ident: D0CS01482F-(cit5)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00373 – volume: 142 start-page: 1933 year: 2020 ident: D0CS01482F-(cit377)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11355 – volume: 7 start-page: 3838 year: 2019 ident: D0CS01482F-(cit113)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b04735 – volume: 27 start-page: 7372 year: 2015 ident: D0CS01482F-(cit218)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201503648 – volume: 21 start-page: 2587 year: 2019 ident: D0CS01482F-(cit399)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP07463A – volume: 48 start-page: 2996 year: 2015 ident: D0CS01482F-(cit81)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00262 – volume: 7 start-page: 3527 year: 2019 ident: D0CS01482F-(cit305)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b05770 – volume: 3 start-page: 821 year: 2016 ident: D0CS01482F-(cit194)/*[position()=1] publication-title: Inorg. Chem. Front. doi: 10.1039/C5QI00198F – volume: 9 start-page: 1687 year: 2016 ident: D0CS01482F-(cit346)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03694A – volume: 46 start-page: 6927 year: 2017 ident: D0CS01482F-(cit147)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00283A – volume: 49 start-page: 4135 year: 2020 ident: D0CS01482F-(cit144)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00278J – volume: 64 start-page: 833 year: 2015 ident: D0CS01482F-(cit206)/*[position()=1] publication-title: Polym. Int. doi: 10.1002/pi.4908 – volume: 43 start-page: 5257 year: 2014 ident: D0CS01482F-(cit238)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00015C – volume: 59 start-page: 9171 year: 2020 ident: D0CS01482F-(cit227)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202003842 – volume: 15 start-page: 1963 year: 2020 ident: D0CS01482F-(cit296)/*[position()=1] publication-title: Chem. – Asian J. doi: 10.1002/asia.202000083 – start-page: 554 year: 2006 ident: D0CS01482F-(cit50)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/B512982F – volume: 277 start-page: 102108 year: 2020 ident: D0CS01482F-(cit173)/*[position()=1] publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2020.102108 – volume: 42 start-page: 2423 year: 2013 ident: D0CS01482F-(cit76)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35360A – volume: 24 start-page: 10984 year: 2018 ident: D0CS01482F-(cit395)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201802585 – volume: 138 start-page: 962 year: 2016 ident: D0CS01482F-(cit152)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11720 – volume: 133 start-page: 5652 year: 2011 ident: D0CS01482F-(cit157)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja111042f – volume: 28 start-page: 215 year: 2016 ident: D0CS01482F-(cit302)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201502696 – volume: 31 start-page: 1900592 year: 2019 ident: D0CS01482F-(cit325)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201900592 – volume: 11 start-page: 1520 year: 2019 ident: D0CS01482F-(cit313)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b20142 – volume: 10 start-page: 4632 year: 2017 ident: D0CS01482F-(cit106)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201701196 – volume: 42 start-page: 548 year: 2013 ident: D0CS01482F-(cit127)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35072F – volume: 2 start-page: 816 year: 2012 ident: D0CS01482F-(cit229)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200013 – volume: 140 start-page: 3871 year: 2018 ident: D0CS01482F-(cit385)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00605 – volume: 25 start-page: 14026 year: 2019 ident: D0CS01482F-(cit367)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201902203 – volume: 132 start-page: 2655 year: 2010 ident: D0CS01482F-(cit40)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja908488s – volume: 30 start-page: 1704388 year: 2018 ident: D0CS01482F-(cit205)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201704388 – volume: 11 start-page: 497 year: 2020 ident: D0CS01482F-(cit348)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-14237-4 – volume: 118 start-page: 2302 year: 2018 ident: D0CS01482F-(cit226)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00488 – volume: 11 start-page: 87 year: 2020 ident: D0CS01482F-(cit44)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC05041H – volume: 4 start-page: 1301523 year: 2014 ident: D0CS01482F-(cit265)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301523 – volume: 139 start-page: 1424 year: 2017 ident: D0CS01482F-(cit394)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12404 – volume: 137 start-page: 4288 year: 2015 ident: D0CS01482F-(cit370)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b00046 – volume: 29 start-page: 1901301 year: 2019 ident: D0CS01482F-(cit191)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901301 – volume: 52 start-page: 2000 year: 2013 ident: D0CS01482F-(cit29)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic302369v – volume: 303 start-page: 1831 year: 2004 ident: D0CS01482F-(cit63)/*[position()=1] publication-title: Science doi: 10.1126/science.1093087 – volume: 135 start-page: 17105 year: 2013 ident: D0CS01482F-(cit178)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja408084j – volume: 9 start-page: 10126 year: 2019 ident: D0CS01482F-(cit272)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.9b02583 – volume: 138 start-page: 3031 year: 2016 ident: D0CS01482F-(cit164)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10754 – volume: 576 start-page: 253 year: 2019 ident: D0CS01482F-(cit393)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-019-1798-7 – volume: 112 start-page: 869 year: 2012 ident: D0CS01482F-(cit143)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200190s – volume: 58 start-page: 10198 year: 2019 ident: D0CS01482F-(cit286)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201904058 – volume: 3 start-page: 75 year: 2020 ident: D0CS01482F-(cit345)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-019-0383-7 – volume: 12 start-page: 37986 year: 2020 ident: D0CS01482F-(cit353)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c06537 – volume: 9 start-page: 457 year: 2017 ident: D0CS01482F-(cit307)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2695 – volume: 3 start-page: 1800415 year: 2019 ident: D0CS01482F-(cit139)/*[position()=1] publication-title: Small Methods doi: 10.1002/smtd.201800415 – volume: 6 start-page: 2600 year: 2019 ident: D0CS01482F-(cit254)/*[position()=1] publication-title: ChemElectroChem doi: 10.1002/celc.201801859 – volume: 139 start-page: 18590 year: 2017 ident: D0CS01482F-(cit375)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b09553 – volume: 59 start-page: 10527 year: 2020 ident: D0CS01482F-(cit335)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202000601 – volume: 310 start-page: 1166 year: 2005 ident: D0CS01482F-(cit128)/*[position()=1] publication-title: Science doi: 10.1126/science.1120411 – volume: 2 start-page: 555 year: 2020 ident: D0CS01482F-(cit403)/*[position()=1] publication-title: Trends Chem. doi: 10.1016/j.trechm.2020.01.003 – volume: 54 start-page: 5604 year: 2015 ident: D0CS01482F-(cit66)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b00924 – volume: 117 start-page: 3377 year: 2017 ident: D0CS01482F-(cit49)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00546 – volume: 139 start-page: 15858 year: 2017 ident: D0CS01482F-(cit67)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08678 – volume: 28 start-page: 3423 year: 2016 ident: D0CS01482F-(cit248)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201504766 – volume: 55 start-page: 14510 year: 2016 ident: D0CS01482F-(cit279)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201604311 – volume: 5 start-page: eaaw2322 year: 2019 ident: D0CS01482F-(cit322)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw2322 – volume: 30 start-page: 1705112 year: 2018 ident: D0CS01482F-(cit285)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201705112 – volume: 2 start-page: 877 year: 2017 ident: D0CS01482F-(cit151)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-017-0018-7 – volume: 48 start-page: 488 year: 2019 ident: D0CS01482F-(cit137)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00376A – volume: 59 start-page: 18954 year: 2020 ident: D0CS01482F-(cit356)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202006899 – volume: 137 start-page: 3565 year: 2015 ident: D0CS01482F-(cit99)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja512575v – volume: 112 start-page: 724 year: 2012 ident: D0CS01482F-(cit141)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr2003272 – volume: 141 start-page: 9155 year: 2019 ident: D0CS01482F-(cit38)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02864 – volume: 7 start-page: 23055 year: 2019 ident: D0CS01482F-(cit352)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA07967J – year: 2020 ident: D0CS01482F-(cit172)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201909880 – volume: 133 start-page: 9178 year: 2011 ident: D0CS01482F-(cit70)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja202138m – volume: 10 start-page: 2640 year: 2020 ident: D0CS01482F-(cit24)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.9b04477 – volume: 135 start-page: 7438 year: 2013 ident: D0CS01482F-(cit392)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja402727d – volume: 2 start-page: 35 year: 2016 ident: D0CS01482F-(cit134)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2015.11.005 – volume: 4 start-page: 15621 year: 2016 ident: D0CS01482F-(cit281)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA03059A – volume: 9 start-page: 32840 year: 2017 ident: D0CS01482F-(cit324)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b11229 – volume: 28 start-page: 4149 year: 2016 ident: D0CS01482F-(cit219)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201600108 – volume: 57 start-page: 15070 year: 2018 ident: D0CS01482F-(cit116)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201807996 – volume: 57 start-page: 8525 year: 2018 ident: D0CS01482F-(cit287)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201803262 – volume: 59 start-page: 4634 year: 2020 ident: D0CS01482F-(cit119)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201910309 – volume: 8 start-page: 1837 year: 2015 ident: D0CS01482F-(cit135)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE00762C – volume: 58 start-page: 10677 year: 2019 ident: D0CS01482F-(cit298)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201907002 – volume: 114 start-page: 3919 year: 2014 ident: D0CS01482F-(cit6)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr400415k – volume: 30 start-page: 1703663 year: 2018 ident: D0CS01482F-(cit149)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201703663 – volume: 9 start-page: 6961 year: 2018 ident: D0CS01482F-(cit303)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC02294A – volume: 113 start-page: 3606 year: 1991 ident: D0CS01482F-(cit154)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00009a065 – volume: 315 start-page: 1565 year: 2007 ident: D0CS01482F-(cit12)/*[position()=1] publication-title: Science doi: 10.1126/science.1135844 – volume: 113 start-page: 6621 year: 2013 ident: D0CS01482F-(cit75)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr300463y – volume: 46 start-page: 7334 year: 2010 ident: D0CS01482F-(cit37)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c0cc01797c – volume: 55 start-page: 2650 year: 2016 ident: D0CS01482F-(cit252)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201504830 – volume: 141 start-page: 1807 year: 2019 ident: D0CS01482F-(cit125)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10334 – volume: 9 start-page: 12584 year: 2017 ident: D0CS01482F-(cit384)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b16834 – volume: 22 start-page: 40 year: 2019 ident: D0CS01482F-(cit329)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.12.021 – volume: 4 start-page: 115 year: 2019 ident: D0CS01482F-(cit150)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-018-0308-8 – volume: 9 start-page: 5111 year: 2019 ident: D0CS01482F-(cit174)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.8b04960 – volume: 2 start-page: 65 year: 2018 ident: D0CS01482F-(cit290)/*[position()=1] publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0010-1 – volume: 43 start-page: 98 year: 2004 ident: D0CS01482F-(cit383)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200352564 – volume: 46 start-page: 5730 year: 2017 ident: D0CS01482F-(cit216)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00315C – volume: 4 start-page: 329 year: 2019 ident: D0CS01482F-(cit308)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-019-0355-9 – volume: 12 start-page: 801 year: 2019 ident: D0CS01482F-(cit107)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201802765 – volume: 11 start-page: 3075 year: 2018 ident: D0CS01482F-(cit237)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01991F – start-page: 3229 year: 2017 ident: D0CS01482F-(cit57)/*[position()=1] publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201700394 – volume: 58 start-page: 4504 year: 2019 ident: D0CS01482F-(cit92)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201814339 – volume: 3 start-page: 2048 year: 2016 ident: D0CS01482F-(cit263)/*[position()=1] publication-title: ChemElectroChem doi: 10.1002/celc.201600435 – volume: 118 start-page: 2469 year: 2018 ident: D0CS01482F-(cit8)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00664 – volume: 51 start-page: 7440 year: 2012 ident: D0CS01482F-(cit185)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201202471 – volume: 1 start-page: 592 year: 2018 ident: D0CS01482F-(cit245)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-018-0108-3 – volume: 11 start-page: 1723 year: 2018 ident: D0CS01482F-(cit190)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00977E – volume: 139 start-page: 13476 year: 2017 ident: D0CS01482F-(cit404)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06459 – volume: 8 start-page: 2356 year: 2016 ident: D0CS01482F-(cit270)/*[position()=1] publication-title: ChemCatChem doi: 10.1002/cctc.201600298 – volume: 579 start-page: 598 year: 2020 ident: D0CS01482F-(cit312)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.06.109 – volume: 1 start-page: 922 year: 2018 ident: D0CS01482F-(cit401)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-018-0182-6 – volume: 1 start-page: 34 year: 2011 ident: D0CS01482F-(cit233)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201000010 – volume: 269 start-page: 1069 year: 1995 ident: D0CS01482F-(cit9)/*[position()=1] publication-title: Science doi: 10.1126/science.7652554 – volume: 2 start-page: 39 year: 2018 ident: D0CS01482F-(cit321)/*[position()=1] publication-title: Sustainable Energy Fuels doi: 10.1039/C7SE00413C – volume: 7 start-page: 10942 year: 2016 ident: D0CS01482F-(cit390)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms10942 – volume: 51 start-page: 3932 year: 2012 ident: D0CS01482F-(cit98)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic3001619 – volume: 19 start-page: 45 year: 2015 ident: D0CS01482F-(cit97)/*[position()=1] publication-title: J. Porphyrins phthalocyanines doi: 10.1142/S1088424615300013 – volume: 5 start-page: 2421 year: 2003 ident: D0CS01482F-(cit27)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/ol034581j – volume: 134 start-page: 5974 year: 2012 ident: D0CS01482F-(cit43)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3004914 – volume: 140 start-page: 15591 year: 2018 ident: D0CS01482F-(cit155)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b09521 – volume: 33 start-page: 1839 year: 1994 ident: D0CS01482F-(cit61)/*[position()=1] publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199418391 – volume: 39 start-page: 20171 year: 2014 ident: D0CS01482F-(cit327)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.09.164 – volume: 116 start-page: 2886 year: 2016 ident: D0CS01482F-(cit1)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00340 – volume: 11 start-page: 2831 year: 2020 ident: D0CS01482F-(cit292)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-020-16715-6 – volume: 28 start-page: 1803329 year: 2018 ident: D0CS01482F-(cit234)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803329 – volume: 19 start-page: 29540 year: 2017 ident: D0CS01482F-(cit374)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP06187K – volume: 4 start-page: 8661 year: 2019 ident: D0CS01482F-(cit317)/*[position()=1] publication-title: ChemistrySelect doi: 10.1002/slct.201901713 – volume: 355 start-page: eaal1585 year: 2017 ident: D0CS01482F-(cit126)/*[position()=1] publication-title: Science doi: 10.1126/science.aal1585 – volume: 138 start-page: 16639 year: 2016 ident: D0CS01482F-(cit80)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07014 – volume: 118 start-page: 2313 year: 2018 ident: D0CS01482F-(cit250)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00335 |
SSID | ssj0011762 |
Score | 2.7046726 |
SecondaryResourceType | review_article |
Snippet | Porphyrin-based frameworks, as specific kinds of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in... Porphyrin-based frameworks, as specific kinds of metal–organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 254 |
SubjectTerms | Carbon dioxide Catalytic converters Conversion Crystal structure electrochemistry Electron transfer Energy storage Mass transfer Metal air batteries Metal-organic frameworks oxygen Oxygen evolution reactions oxygen production Oxygen reduction reactions Porphyrins Rechargeable batteries Storage batteries structure-activity relationships Zinc-oxygen batteries |
Title | Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33475099 https://www.proquest.com/docview/2494319583 https://www.proquest.com/docview/2479741349 https://www.proquest.com/docview/2524268661 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gAviNugYyAjeEFVRupL4zxOpVVBZSDRirIHQhLbrNLUTF0rjf16jm9JdxEaPDRKjx0r8vnic2wffwehNwVggIHZibggZpuxSKM0LmgExlwkSpGSFuaA86fD3mjKPs74rNX6sRG1tF4V--XFjedK_kerIAO9mlOy_6DZulEQwD3oF66gYbjeSsdfKtNLy_kiMsZIdnSItLIkC53q_PcvQ-LvMt3YhRrLP2KPstl_jsBZOgZZG2GeLwu4k_PqfC4v0xgEZoEQ5-l5TOuInrlfeT5aVxfHlTeIdqneyUcgi743YDw6Vr4gB-O0KfcPfFPzzTUJshGU5YdR1osjljhmxzDOOoJZjyfWOd0nJiiDcJeyJQyg3LE3eWMcSq8N9DE1PKkyLs_MkijRjTkLW_iHn7PhdDzOJoPZ5A7aJjCNgHFw-2Aw-TCu95m6iU05W79vILCl6bum7csuy7V5CHgly5Atxnolkwfovp9O4AOHjYeopRaP0N1-yOL3GP28ghHcYAQDRrDDCL6KEQwYwTVGcI0RXGnsMII9Rp6g6XAw6Y8in1UjKhntrSKZ5qliimtpmEIZy3mpC6ETAkM5V6JLu8oIYijpSp6WMuFaM_h1S0lVr6Q7aGtRLdQzhJO45LGUQsCsgmkiCi5kLnKlaQFuLNFt9DZ0XFZ6ynmT-eQks6EPNM3ex_2vtpOHbfS6rnvqiFZurLUX-j_zH-JZRlgKbnDKBW2jV3Ux9LPZ-8oXqlqbOgnMnA0X51_qcOOvCvBY2-ip0239KpQy41vD0zug7FrcgGT3Fs0-R_ear2UPba2Wa_UCfNpV8dID8w9GiqWA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porphyrin-based+frameworks+for+oxygen+electrocatalysis+and+catalytic+reduction+of+carbon+dioxide&rft.jtitle=Chemical+Society+reviews&rft.au=Liang%2C+Zuozhong&rft.au=Wang%2C+Hong-Yan&rft.au=Zheng%2C+Haoquan&rft.au=Zhang%2C+Wei&rft.date=2021-03-01&rft.issn=1460-4744&rft.volume=50&rft.issue=4+p.2540-2581&rft.spage=2540&rft.epage=2581&rft_id=info:doi/10.1039%2Fd0cs01482f&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |