Representation of the Arctic Oscillation in the CMIP5 Models

The temporal variability and spatial pattern of the Arctic Oscillation (AO) simulated in the historical experiment of 26 coupled climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) are evaluated. Spectral analysis of the monthly AO index indicates that 23 out of...

Full description

Saved in:
Bibliographic Details
Published inAdvances in climate change research Vol. 4; no. 4; pp. 242 - 249
Main Author ZUO Jin-Qing LI Wei-Jing REN Hong-Li
Format Journal Article
LanguageEnglish
Published Elsevier B.V 25.12.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The temporal variability and spatial pattern of the Arctic Oscillation (AO) simulated in the historical experiment of 26 coupled climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) are evaluated. Spectral analysis of the monthly AO index indicates that 23 out of the 26 CMIP5 models exhibit no statistically significant spectral peak in the historical experiment, as seen in the observations. These models are able to reproduce the AO pattern in the sea level pressure anomaly field during boreal winter, but the intensity of the AO pattern tends to be overestimated in all the models. The zonal-mean zonal wind anomalies associated with the AO is dominated by a meridional dipole in the mid-high latitudes of the Northern Hemisphere during boreal winter, which is well reproduced by only a few models. Most models show significant biases in both strength and location of the dipole compared to the observation. In considering the temporal variability as well as spatial structures in both horizontal and vertical directions, the MPI-ESM-P model reproduces an AO pattern that resembles the observation the best.
Bibliography:The temporal variability and spatial pattern of the Arctic Oscillation (AO) simulated in the historical experiment of 26 coupled climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) are evaluated. Spectral analysis of the monthly AO index indicates that 23 out of the 26 CMIP5 models exhibit no statistically significant spectral peak in the historical experiment, as seen in the observations. These models are able to reproduce the AO pattern in the sea level pressure anomaly field during boreal winter, but the intensity of the AO pattern tends to be overestimated in all the models. The zonal-mean zonal wind anomalies associated with the AO is dominated by a meridional dipole in the mid-high latitudes of the Northern Hemisphere during boreal winter, which is well reproduced by only a few models. Most models show significant biases in both strength and location of the dipole compared to the observation. In considering the temporal variability as well as spatial structures in both horizontal and vertical directions, the MPI-ESM-P model reproduces an AO pattern that resembles the observation the best.
Arctic Oscillation; model evaluation; coupled climate model; CMIP5
11-5918/P
ISSN:1674-9278
1674-9278
DOI:10.3724/SP.J.1248.2013.242